Run
10330429

Run 10330429

Task 14970 (Supervised Classification) har Uploaded 19-08-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C10.452693667466372
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef00.5864644897807998
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree2
sklearn.svm.classes.SVC(31)_gamma3.116722283916533e-05
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilityfalse
sklearn.svm.classes.SVC(31)_random_state23675
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9759 ± 0.0026
Per class
Cross-validation details (10-fold Crossvalidation)
0.96 ± 0.0043
Per class
Cross-validation details (10-fold Crossvalidation)
0.952 ± 0.0052
Cross-validation details (10-fold Crossvalidation)
0.9563 ± 0.0048
Cross-validation details (10-fold Crossvalidation)
0.0133 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.2771 ± 0
Cross-validation details (10-fold Crossvalidation)
10299
Per class
Cross-validation details (10-fold Crossvalidation)
0.96 ± 0.0042
Per class
Cross-validation details (10-fold Crossvalidation)
0.9601 ± 0.0043
Cross-validation details (10-fold Crossvalidation)
2.5759 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.9601 ± 0.0043
Per class
Cross-validation details (10-fold Crossvalidation)
0.048 ± 0.0052
Cross-validation details (10-fold Crossvalidation)
0.3722 ± 0
Cross-validation details (10-fold Crossvalidation)
0.1153 ± 0.0062
Cross-validation details (10-fold Crossvalidation)
0.3099 ± 0.0167
Cross-validation details (10-fold Crossvalidation)