Run
10323323

Run 10323323

Task 3903 (Supervised Classification) pc3 Uploaded 18-08-2019 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C1.3998827493443355
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef00.24043415025362047
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree5
sklearn.svm.classes.SVC(31)_gamma0.002003963280993466
sklearn.svm.classes.SVC(31)_kernel"poly"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilityfalse
sklearn.svm.classes.SVC(31)_random_state47841
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.4996 ± 0.0011
Per class
Cross-validation details (10-fold Crossvalidation)
0.8489
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0013 ± 0.0039
Cross-validation details (10-fold Crossvalidation)
0.2568 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
0.103 ± 0.0021
Cross-validation details (10-fold Crossvalidation)
0.1842 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
1563
Per class
Cross-validation details (10-fold Crossvalidation)
0.8057
Per class
Cross-validation details (10-fold Crossvalidation)
0.897 ± 0.0021
Cross-validation details (10-fold Crossvalidation)
0.4765 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.897 ± 0.0021
Per class
Cross-validation details (10-fold Crossvalidation)
0.5593 ± 0.0112
Cross-validation details (10-fold Crossvalidation)
0.3031 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.3209 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
1.0588 ± 0.0103
Cross-validation details (10-fold Crossvalidation)