Run
10233430

Run 10233430

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 23-07-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C378f4ab5c0a3dd(n19=sklearn.pipeline.C58e5445600fe3(n20=sk learn.pipeline.C378f4ab5c091e3(n21=sklearn.compose._column_transformer.C58e 5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6) ,n23=fastsklearnfeature.transformations.OneDivisionTransformation.C58e54456 00e66),n24=sklearn.pipeline.C378f4ab5c09bed(n25=sklearn.compose._column_tra nsformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C3 78f4ab5c0995e))),n27=fastsklearnfeature.transformations.HigherOrderCommutat iveTransformation.C378f4ab5c0a2c8,c=sklearn.linear_model.logistic.LogisticR egression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C1000
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state24516
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C378f4ab5c0a3dd(n19=sklearn.pipeline.C58e5445600fe3(n20=sklearn.pipeline.C378f4ab5c091e3(n21=sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6),n23=fastsklearnfeature.transformations.OneDivisionTransformation.C58e5445600e66),n24=sklearn.pipeline.C378f4ab5c09bed(n25=sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e))),n27=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C378f4ab5c0a2c8,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C378f4ab5c0a3dd(n19=sklearn.pipeline.C58e5445600fe3(n20=sklearn.pipeline.C378f4ab5c091e3(n21=sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6),n23=fastsklearnfeature.transformations.OneDivisionTransformation.C58e5445600e66),n24=sklearn.pipeline.C378f4ab5c09bed(n25=sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e))),n27=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C378f4ab5c0a2c8,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n19", "step_name": "n19"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n27", "step_name": "n27"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58e5445600fe3(n20=sklearn.pipeline.C378f4ab5c091e3(n21=sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6),n23=fastsklearnfeature.transformations.OneDivisionTransformation.C58e5445600e66),n24=sklearn.pipeline.C378f4ab5c09bed(n25=sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e)))(1)_n_jobsnull
sklearn.pipeline.C58e5445600fe3(n20=sklearn.pipeline.C378f4ab5c091e3(n21=sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6),n23=fastsklearnfeature.transformations.OneDivisionTransformation.C58e5445600e66),n24=sklearn.pipeline.C378f4ab5c09bed(n25=sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n20", "step_name": "n20"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n24", "step_name": "n24"}}]
sklearn.pipeline.C58e5445600fe3(n20=sklearn.pipeline.C378f4ab5c091e3(n21=sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6),n23=fastsklearnfeature.transformations.OneDivisionTransformation.C58e5445600e66),n24=sklearn.pipeline.C378f4ab5c09bed(n25=sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e)))(1)_transformer_weightsnull
sklearn.pipeline.C378f4ab5c091e3(n21=sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6),n23=fastsklearnfeature.transformations.OneDivisionTransformation.C58e5445600e66)(1)_memorynull
sklearn.pipeline.C378f4ab5c091e3(n21=sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6),n23=fastsklearnfeature.transformations.OneDivisionTransformation.C58e5445600e66)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n21", "step_name": "n21"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n23", "step_name": "n23"}}]
sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6)(1)_n_jobsnull
sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6)(1)_remainder"drop"
sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58e5445600e09(n22=sklearn.preprocessing._function_transformer.C378f4ab5c089e6)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n22", "step_name": "n22", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C378f4ab5c089e6(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C378f4ab5c089e6(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C378f4ab5c089e6(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C378f4ab5c089e6(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C378f4ab5c089e6(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C378f4ab5c089e6(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C378f4ab5c089e6(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C378f4ab5c089e6(1)_validatefalse
sklearn.pipeline.C378f4ab5c09bed(n25=sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e))(1)_memorynull
sklearn.pipeline.C378f4ab5c09bed(n25=sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n25", "step_name": "n25"}}]
sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e)(1)_n_jobsnull
sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e)(1)_remainder"drop"
sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C378f4ab5c09a85(n26=sklearn.preprocessing._function_transformer.C378f4ab5c0995e)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n26", "step_name": "n26", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C378f4ab5c0995e(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C378f4ab5c0995e(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C378f4ab5c0995e(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C378f4ab5c0995e(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C378f4ab5c0995e(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C378f4ab5c0995e(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C378f4ab5c0995e(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C378f4ab5c0995e(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C378f4ab5c0a2c8(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanprod"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C378f4ab5c0a2c8(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C378f4ab5c0a2c8(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.717 ± 0.0495
Per class
Cross-validation details (10-fold Crossvalidation)
0.6357 ± 0.0426
Per class
Cross-validation details (10-fold Crossvalidation)
0.2512 ± 0.0608
Cross-validation details (10-fold Crossvalidation)
-0.4055 ± 0.0782
Cross-validation details (10-fold Crossvalidation)
0.4345 ± 0.0205
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.7759 ± 0.0315
Per class
Cross-validation details (10-fold Crossvalidation)
0.6083 ± 0.0429
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.6083 ± 0.0429
Per class
Cross-validation details (10-fold Crossvalidation)
1.1968 ± 0.0554
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4694 ± 0.0176
Cross-validation details (10-fold Crossvalidation)
1.1022 ± 0.0408
Cross-validation details (10-fold Crossvalidation)