Run
10233428

Run 10233428

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 23-07-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C378f4a8f3c1ca5(n3=sklearn.pipeline.C58e5441860268(n4=skle arn.pipeline.C378f4a8f3c0d53(n5=sklearn.compose._column_transformer.C378f4a 8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959)),n 7=sklearn.pipeline.C378f4a8f3c158a(n8=sklearn.compose._column_transformer.C 378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c13 72))),n10=fastsklearnfeature.transformations.IdentityTransformation.C58e544 18602c1,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state21645
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C378f4a8f3c1ca5(n3=sklearn.pipeline.C58e5441860268(n4=sklearn.pipeline.C378f4a8f3c0d53(n5=sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959)),n7=sklearn.pipeline.C378f4a8f3c158a(n8=sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372))),n10=fastsklearnfeature.transformations.IdentityTransformation.C58e54418602c1,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C378f4a8f3c1ca5(n3=sklearn.pipeline.C58e5441860268(n4=sklearn.pipeline.C378f4a8f3c0d53(n5=sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959)),n7=sklearn.pipeline.C378f4a8f3c158a(n8=sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372))),n10=fastsklearnfeature.transformations.IdentityTransformation.C58e54418602c1,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n3", "step_name": "n3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58e5441860268(n4=sklearn.pipeline.C378f4a8f3c0d53(n5=sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959)),n7=sklearn.pipeline.C378f4a8f3c158a(n8=sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372)))(1)_n_jobsnull
sklearn.pipeline.C58e5441860268(n4=sklearn.pipeline.C378f4a8f3c0d53(n5=sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959)),n7=sklearn.pipeline.C378f4a8f3c158a(n8=sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n4", "step_name": "n4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}]
sklearn.pipeline.C58e5441860268(n4=sklearn.pipeline.C378f4a8f3c0d53(n5=sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959)),n7=sklearn.pipeline.C378f4a8f3c158a(n8=sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372)))(1)_transformer_weightsnull
sklearn.pipeline.C378f4a8f3c0d53(n5=sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959))(1)_memorynull
sklearn.pipeline.C378f4a8f3c0d53(n5=sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n5", "step_name": "n5"}}]
sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959)(1)_n_jobsnull
sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959)(1)_remainder"drop"
sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C378f4a8f3c0b39(n6=sklearn.preprocessing._function_transformer.C378f4a8f3c0959)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C378f4a8f3c0959(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C378f4a8f3c0959(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C378f4a8f3c0959(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C378f4a8f3c0959(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C378f4a8f3c0959(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C378f4a8f3c0959(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C378f4a8f3c0959(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C378f4a8f3c0959(1)_validatefalse
sklearn.pipeline.C378f4a8f3c158a(n8=sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372))(1)_memorynull
sklearn.pipeline.C378f4a8f3c158a(n8=sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8"}}]
sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372)(1)_n_jobsnull
sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372)(1)_remainder"drop"
sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C378f4a8f3c1457(n9=sklearn.preprocessing._function_transformer.C378f4a8f3c1372)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C378f4a8f3c1372(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C378f4a8f3c1372(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C378f4a8f3c1372(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C378f4a8f3c1372(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C378f4a8f3c1372(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C378f4a8f3c1372(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C378f4a8f3c1372(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C378f4a8f3c1372(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C58e54418602c1(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7186 ± 0.0597
Per class
Cross-validation details (10-fold Crossvalidation)
0.6822 ± 0.0388
Per class
Cross-validation details (10-fold Crossvalidation)
0.2595 ± 0.0786
Cross-validation details (10-fold Crossvalidation)
-0.5036 ± 0.0501
Cross-validation details (10-fold Crossvalidation)
0.4535 ± 0.0143
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.7505 ± 0.0332
Per class
Cross-validation details (10-fold Crossvalidation)
0.6578 ± 0.0423
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.6578 ± 0.0423
Per class
Cross-validation details (10-fold Crossvalidation)
1.249 ± 0.0398
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4684 ± 0.0149
Cross-validation details (10-fold Crossvalidation)
1.0999 ± 0.0356
Cross-validation details (10-fold Crossvalidation)