Run
10231147

Run 10231147

Task 10093 (Supervised Classification) banknote-authentication Uploaded 18-07-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C58df1c462053f(n155=sklearn.pipeline.C58df1c46204b9(n156=s klearn.pipeline.C378b71abd4228b(n157=sklearn.compose._column_transformer.C3 78b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41 d73)),n159=sklearn.pipeline.C378b71abd42c5c(n160=sklearn.compose._column_tr ansformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C 378b71abd429c0))),n162=fastsklearnfeature.transformations.IdentityTransform ation.C378b71abd4333e,c=sklearn.linear_model.logistic.LogisticRegression)(1 )Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.01
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state57774
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C58df1c462053f(n155=sklearn.pipeline.C58df1c46204b9(n156=sklearn.pipeline.C378b71abd4228b(n157=sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73)),n159=sklearn.pipeline.C378b71abd42c5c(n160=sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0))),n162=fastsklearnfeature.transformations.IdentityTransformation.C378b71abd4333e,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C58df1c462053f(n155=sklearn.pipeline.C58df1c46204b9(n156=sklearn.pipeline.C378b71abd4228b(n157=sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73)),n159=sklearn.pipeline.C378b71abd42c5c(n160=sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0))),n162=fastsklearnfeature.transformations.IdentityTransformation.C378b71abd4333e,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n155", "step_name": "n155"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n162", "step_name": "n162"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58df1c46204b9(n156=sklearn.pipeline.C378b71abd4228b(n157=sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73)),n159=sklearn.pipeline.C378b71abd42c5c(n160=sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0)))(1)_n_jobsnull
sklearn.pipeline.C58df1c46204b9(n156=sklearn.pipeline.C378b71abd4228b(n157=sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73)),n159=sklearn.pipeline.C378b71abd42c5c(n160=sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n156", "step_name": "n156"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n159", "step_name": "n159"}}]
sklearn.pipeline.C58df1c46204b9(n156=sklearn.pipeline.C378b71abd4228b(n157=sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73)),n159=sklearn.pipeline.C378b71abd42c5c(n160=sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0)))(1)_transformer_weightsnull
sklearn.pipeline.C378b71abd4228b(n157=sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73))(1)_memorynull
sklearn.pipeline.C378b71abd4228b(n157=sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n157", "step_name": "n157"}}]
sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73)(1)_n_jobsnull
sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73)(1)_remainder"drop"
sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C378b71abd4200c(n158=sklearn.preprocessing._function_transformer.C378b71abd41d73)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n158", "step_name": "n158", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C378b71abd41d73(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C378b71abd41d73(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C378b71abd41d73(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C378b71abd41d73(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C378b71abd41d73(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C378b71abd41d73(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C378b71abd41d73(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C378b71abd41d73(1)_validatefalse
sklearn.pipeline.C378b71abd42c5c(n160=sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0))(1)_memorynull
sklearn.pipeline.C378b71abd42c5c(n160=sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n160", "step_name": "n160"}}]
sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0)(1)_n_jobsnull
sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0)(1)_remainder"drop"
sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58df1c462044a(n161=sklearn.preprocessing._function_transformer.C378b71abd429c0)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n161", "step_name": "n161", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C378b71abd429c0(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C378b71abd429c0(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C378b71abd429c0(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C378b71abd429c0(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C378b71abd429c0(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C378b71abd429c0(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C378b71abd429c0(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C378b71abd429c0(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C378b71abd4333e(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.935 ± 0.0265
Per class
Cross-validation details (10-fold Crossvalidation)
0.8779 ± 0.0335
Per class
Cross-validation details (10-fold Crossvalidation)
0.7545 ± 0.0671
Cross-validation details (10-fold Crossvalidation)
0.5868 ± 0.0532
Cross-validation details (10-fold Crossvalidation)
0.2204 ± 0.0246
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
1372
Per class
Cross-validation details (10-fold Crossvalidation)
0.8816 ± 0.033
Per class
Cross-validation details (10-fold Crossvalidation)
0.8776 ± 0.0336
Cross-validation details (10-fold Crossvalidation)
0.9911 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.8776 ± 0.0336
Per class
Cross-validation details (10-fold Crossvalidation)
0.4463 ± 0.0499
Cross-validation details (10-fold Crossvalidation)
0.4969 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.3135 ± 0.0321
Cross-validation details (10-fold Crossvalidation)
0.6309 ± 0.0646
Cross-validation details (10-fold Crossvalidation)