Run
10231142

Run 10231142

Task 10093 (Supervised Classification) banknote-authentication Uploaded 18-07-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C378b711855d3e2(n117=sklearn.pipeline.C378b711855ce95(n118 =sklearn.pipeline.C8e31c55d047d(n119=sklearn.compose._column_transformer.C3 78b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855b aff)),n121=sklearn.pipeline.C378b711855cb85(n122=sklearn.compose._column_tr ansformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer. C58df1b5a22daf))),n124=fastsklearnfeature.transformations.IdentityTransform ation.C58df1b5a22ea6,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.01
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state7184
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C378b711855d3e2(n117=sklearn.pipeline.C378b711855ce95(n118=sklearn.pipeline.C8e31c55d047d(n119=sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff)),n121=sklearn.pipeline.C378b711855cb85(n122=sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf))),n124=fastsklearnfeature.transformations.IdentityTransformation.C58df1b5a22ea6,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C378b711855d3e2(n117=sklearn.pipeline.C378b711855ce95(n118=sklearn.pipeline.C8e31c55d047d(n119=sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff)),n121=sklearn.pipeline.C378b711855cb85(n122=sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf))),n124=fastsklearnfeature.transformations.IdentityTransformation.C58df1b5a22ea6,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n117", "step_name": "n117"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n124", "step_name": "n124"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C378b711855ce95(n118=sklearn.pipeline.C8e31c55d047d(n119=sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff)),n121=sklearn.pipeline.C378b711855cb85(n122=sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf)))(1)_n_jobsnull
sklearn.pipeline.C378b711855ce95(n118=sklearn.pipeline.C8e31c55d047d(n119=sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff)),n121=sklearn.pipeline.C378b711855cb85(n122=sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n118", "step_name": "n118"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n121", "step_name": "n121"}}]
sklearn.pipeline.C378b711855ce95(n118=sklearn.pipeline.C8e31c55d047d(n119=sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff)),n121=sklearn.pipeline.C378b711855cb85(n122=sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf)))(1)_transformer_weightsnull
sklearn.pipeline.C8e31c55d047d(n119=sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff))(1)_memorynull
sklearn.pipeline.C8e31c55d047d(n119=sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n119", "step_name": "n119"}}]
sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff)(1)_n_jobsnull
sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff)(1)_remainder"drop"
sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C378b711855bdde(n120=sklearn.preprocessing._function_transformer.C378b711855baff)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n120", "step_name": "n120", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C378b711855baff(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C378b711855baff(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C378b711855baff(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C378b711855baff(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C378b711855baff(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C378b711855baff(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C378b711855baff(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C378b711855baff(1)_validatefalse
sklearn.pipeline.C378b711855cb85(n122=sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf))(1)_memorynull
sklearn.pipeline.C378b711855cb85(n122=sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n122", "step_name": "n122"}}]
sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf)(1)_n_jobsnull
sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf)(1)_remainder"drop"
sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C378b711855c9fc(n123=sklearn.preprocessing._function_transformer.C58df1b5a22daf)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n123", "step_name": "n123", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C58df1b5a22daf(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58df1b5a22daf(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58df1b5a22daf(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58df1b5a22daf(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58df1b5a22daf(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58df1b5a22daf(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58df1b5a22daf(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58df1b5a22daf(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C58df1b5a22ea6(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.935 ± 0.0265
Per class
Cross-validation details (10-fold Crossvalidation)
0.8779 ± 0.0335
Per class
Cross-validation details (10-fold Crossvalidation)
0.7545 ± 0.0671
Cross-validation details (10-fold Crossvalidation)
0.5868 ± 0.0532
Cross-validation details (10-fold Crossvalidation)
0.2204 ± 0.0246
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
1372
Per class
Cross-validation details (10-fold Crossvalidation)
0.8816 ± 0.033
Per class
Cross-validation details (10-fold Crossvalidation)
0.8776 ± 0.0336
Cross-validation details (10-fold Crossvalidation)
0.9911 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.8776 ± 0.0336
Per class
Cross-validation details (10-fold Crossvalidation)
0.4463 ± 0.0499
Cross-validation details (10-fold Crossvalidation)
0.4969 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.3135 ± 0.0321
Cross-validation details (10-fold Crossvalidation)
0.6309 ± 0.0646
Cross-validation details (10-fold Crossvalidation)