Run
10231137

Run 10231137

Task 10093 (Supervised Classification) banknote-authentication Uploaded 18-07-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C378b7066e23bed(n79=sklearn.pipeline.C378b7066e23716(n80=s klearn.pipeline.C378b7066e229ce(n81=sklearn.compose._column_transformer.C37 8b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e2247 0)),n83=sklearn.pipeline.C58df1a3e36b99(n84=sklearn.compose._column_transfo rmer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7 066e2312e))),n86=fastsklearnfeature.transformations.IdentityTransformation. C378b7066e23aba,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C1
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state40870
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C378b7066e23bed(n79=sklearn.pipeline.C378b7066e23716(n80=sklearn.pipeline.C378b7066e229ce(n81=sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470)),n83=sklearn.pipeline.C58df1a3e36b99(n84=sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e))),n86=fastsklearnfeature.transformations.IdentityTransformation.C378b7066e23aba,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C378b7066e23bed(n79=sklearn.pipeline.C378b7066e23716(n80=sklearn.pipeline.C378b7066e229ce(n81=sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470)),n83=sklearn.pipeline.C58df1a3e36b99(n84=sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e))),n86=fastsklearnfeature.transformations.IdentityTransformation.C378b7066e23aba,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n79", "step_name": "n79"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n86", "step_name": "n86"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C378b7066e23716(n80=sklearn.pipeline.C378b7066e229ce(n81=sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470)),n83=sklearn.pipeline.C58df1a3e36b99(n84=sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e)))(1)_n_jobsnull
sklearn.pipeline.C378b7066e23716(n80=sklearn.pipeline.C378b7066e229ce(n81=sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470)),n83=sklearn.pipeline.C58df1a3e36b99(n84=sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n80", "step_name": "n80"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n83", "step_name": "n83"}}]
sklearn.pipeline.C378b7066e23716(n80=sklearn.pipeline.C378b7066e229ce(n81=sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470)),n83=sklearn.pipeline.C58df1a3e36b99(n84=sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e)))(1)_transformer_weightsnull
sklearn.pipeline.C378b7066e229ce(n81=sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470))(1)_memorynull
sklearn.pipeline.C378b7066e229ce(n81=sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n81", "step_name": "n81"}}]
sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470)(1)_n_jobsnull
sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470)(1)_remainder"drop"
sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C378b7066e22700(n82=sklearn.preprocessing._function_transformer.C378b7066e22470)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n82", "step_name": "n82", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C378b7066e22470(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C378b7066e22470(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C378b7066e22470(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C378b7066e22470(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C378b7066e22470(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C378b7066e22470(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C378b7066e22470(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C378b7066e22470(1)_validatefalse
sklearn.pipeline.C58df1a3e36b99(n84=sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e))(1)_memorynull
sklearn.pipeline.C58df1a3e36b99(n84=sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n84", "step_name": "n84"}}]
sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e)(1)_n_jobsnull
sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e)(1)_remainder"drop"
sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C378b7066e23258(n85=sklearn.preprocessing._function_transformer.C378b7066e2312e)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n85", "step_name": "n85", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C378b7066e2312e(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C378b7066e2312e(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C378b7066e2312e(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C378b7066e2312e(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C378b7066e2312e(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C378b7066e2312e(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C378b7066e2312e(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C378b7066e2312e(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C378b7066e23aba(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9346 ± 0.0265
Per class
Cross-validation details (10-fold Crossvalidation)
0.8808 ± 0.0329
Per class
Cross-validation details (10-fold Crossvalidation)
0.7602 ± 0.066
Cross-validation details (10-fold Crossvalidation)
0.6426 ± 0.0555
Cross-validation details (10-fold Crossvalidation)
0.1881 ± 0.0262
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
1372
Per class
Cross-validation details (10-fold Crossvalidation)
0.8843 ± 0.0325
Per class
Cross-validation details (10-fold Crossvalidation)
0.8805 ± 0.033
Cross-validation details (10-fold Crossvalidation)
0.9911 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.8805 ± 0.033
Per class
Cross-validation details (10-fold Crossvalidation)
0.3809 ± 0.0532
Cross-validation details (10-fold Crossvalidation)
0.4969 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.3071 ± 0.0354
Cross-validation details (10-fold Crossvalidation)
0.618 ± 0.0714
Cross-validation details (10-fold Crossvalidation)