Run
10228824

Run 10228824

Task 52 (Supervised Classification) heart-statlog Uploaded 25-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C37792ff9a21350(n3=sklearn.pipeline.C58c1e65c36638(n4=skle arn.pipeline.C37792ff9a1c87b(n5=sklearn.compose._column_transformer.C37792f f9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684)),n 7=sklearn.pipeline.C37792ff9a1f2bc(n8=sklearn.compose._column_transformer.C 8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3 ))),n10=fastsklearnfeature.transformations.IdentityTransformation.C37792ff9 a20e80,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C100
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state21849
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C37792ff9a21350(n3=sklearn.pipeline.C58c1e65c36638(n4=sklearn.pipeline.C37792ff9a1c87b(n5=sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684)),n7=sklearn.pipeline.C37792ff9a1f2bc(n8=sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3))),n10=fastsklearnfeature.transformations.IdentityTransformation.C37792ff9a20e80,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C37792ff9a21350(n3=sklearn.pipeline.C58c1e65c36638(n4=sklearn.pipeline.C37792ff9a1c87b(n5=sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684)),n7=sklearn.pipeline.C37792ff9a1f2bc(n8=sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3))),n10=fastsklearnfeature.transformations.IdentityTransformation.C37792ff9a20e80,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n3", "step_name": "n3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58c1e65c36638(n4=sklearn.pipeline.C37792ff9a1c87b(n5=sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684)),n7=sklearn.pipeline.C37792ff9a1f2bc(n8=sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3)))(1)_n_jobsnull
sklearn.pipeline.C58c1e65c36638(n4=sklearn.pipeline.C37792ff9a1c87b(n5=sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684)),n7=sklearn.pipeline.C37792ff9a1f2bc(n8=sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n4", "step_name": "n4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}]
sklearn.pipeline.C58c1e65c36638(n4=sklearn.pipeline.C37792ff9a1c87b(n5=sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684)),n7=sklearn.pipeline.C37792ff9a1f2bc(n8=sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3)))(1)_transformer_weightsnull
sklearn.pipeline.C37792ff9a1c87b(n5=sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684))(1)_memorynull
sklearn.pipeline.C37792ff9a1c87b(n5=sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n5", "step_name": "n5"}}]
sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684)(1)_n_jobsnull
sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684)(1)_remainder"drop"
sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37792ff9a1bdc1(n6=sklearn.preprocessing._function_transformer.C37792ff9a1b684)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6", "argument_1": [11]}}]
sklearn.preprocessing._function_transformer.C37792ff9a1b684(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37792ff9a1b684(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37792ff9a1b684(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37792ff9a1b684(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37792ff9a1b684(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37792ff9a1b684(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37792ff9a1b684(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37792ff9a1b684(1)_validatefalse
sklearn.pipeline.C37792ff9a1f2bc(n8=sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3))(1)_memorynull
sklearn.pipeline.C37792ff9a1f2bc(n8=sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8"}}]
sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3)(1)_n_jobsnull
sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3)(1)_remainder"drop"
sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C8e030a2d23a8(n9=sklearn.preprocessing._function_transformer.C37792ff9a1e9d3)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9", "argument_1": [12]}}]
sklearn.preprocessing._function_transformer.C37792ff9a1e9d3(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37792ff9a1e9d3(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37792ff9a1e9d3(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37792ff9a1e9d3(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37792ff9a1e9d3(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37792ff9a1e9d3(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37792ff9a1e9d3(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37792ff9a1e9d3(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C37792ff9a20e80(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.8346 ± 0.0725
Per class
Cross-validation details (10-fold Crossvalidation)
0.7895 ± 0.0758
Per class
Cross-validation details (10-fold Crossvalidation)
0.5771 ± 0.1519
Cross-validation details (10-fold Crossvalidation)
0.4194 ± 0.0988
Cross-validation details (10-fold Crossvalidation)
0.3022 ± 0.0437
Cross-validation details (10-fold Crossvalidation)
0.4939
Cross-validation details (10-fold Crossvalidation)
270
Per class
Cross-validation details (10-fold Crossvalidation)
0.7938 ± 0.0778
Per class
Cross-validation details (10-fold Crossvalidation)
0.7889 ± 0.0762
Cross-validation details (10-fold Crossvalidation)
0.9911
Cross-validation details (10-fold Crossvalidation)
0.7889 ± 0.0762
Per class
Cross-validation details (10-fold Crossvalidation)
0.6119 ± 0.0884
Cross-validation details (10-fold Crossvalidation)
0.4969
Cross-validation details (10-fold Crossvalidation)
0.3881 ± 0.0541
Cross-validation details (10-fold Crossvalidation)
0.781 ± 0.1089
Cross-validation details (10-fold Crossvalidation)