Run
10228496

Run 10228496

Task 3656 (Supervised Classification) diabetes_numeric Uploaded 15-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3771dd799990e6(n19=sklearn.pipeline.C3771dd79998a85(n20=s klearn.pipeline.C3771dd79997b27(n21=sklearn.compose._column_transformer.C37 71dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761 d)),n23=sklearn.pipeline.C58b62f28f5a40(n24=sklearn.compose._column_transfo rmer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd 79998318))),n26=fastsklearnfeature.transformations.IdentityTransformation.C 3771dd79998f45,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.01
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state16507
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3771dd799990e6(n19=sklearn.pipeline.C3771dd79998a85(n20=sklearn.pipeline.C3771dd79997b27(n21=sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d)),n23=sklearn.pipeline.C58b62f28f5a40(n24=sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318))),n26=fastsklearnfeature.transformations.IdentityTransformation.C3771dd79998f45,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3771dd799990e6(n19=sklearn.pipeline.C3771dd79998a85(n20=sklearn.pipeline.C3771dd79997b27(n21=sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d)),n23=sklearn.pipeline.C58b62f28f5a40(n24=sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318))),n26=fastsklearnfeature.transformations.IdentityTransformation.C3771dd79998f45,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n19", "step_name": "n19"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n26", "step_name": "n26"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3771dd79998a85(n20=sklearn.pipeline.C3771dd79997b27(n21=sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d)),n23=sklearn.pipeline.C58b62f28f5a40(n24=sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318)))(1)_n_jobsnull
sklearn.pipeline.C3771dd79998a85(n20=sklearn.pipeline.C3771dd79997b27(n21=sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d)),n23=sklearn.pipeline.C58b62f28f5a40(n24=sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n20", "step_name": "n20"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n23", "step_name": "n23"}}]
sklearn.pipeline.C3771dd79998a85(n20=sklearn.pipeline.C3771dd79997b27(n21=sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d)),n23=sklearn.pipeline.C58b62f28f5a40(n24=sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318)))(1)_transformer_weightsnull
sklearn.pipeline.C3771dd79997b27(n21=sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d))(1)_memorynull
sklearn.pipeline.C3771dd79997b27(n21=sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n21", "step_name": "n21"}}]
sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d)(1)_n_jobsnull
sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d)(1)_remainder"drop"
sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3771dd7999786a(n22=sklearn.preprocessing._function_transformer.C3771dd7999761d)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n22", "step_name": "n22", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C3771dd7999761d(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3771dd7999761d(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3771dd7999761d(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3771dd7999761d(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dd7999761d(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3771dd7999761d(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dd7999761d(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3771dd7999761d(1)_validatefalse
sklearn.pipeline.C58b62f28f5a40(n24=sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318))(1)_memorynull
sklearn.pipeline.C58b62f28f5a40(n24=sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n24", "step_name": "n24"}}]
sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318)(1)_n_jobsnull
sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318)(1)_remainder"drop"
sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58b62f28f5a10(n25=sklearn.preprocessing._function_transformer.C3771dd79998318)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n25", "step_name": "n25", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3771dd79998318(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3771dd79998318(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3771dd79998318(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3771dd79998318(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dd79998318(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3771dd79998318(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dd79998318(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3771dd79998318(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C3771dd79998f45(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7036 ± 0.3471
Per class
Cross-validation details (10-fold Crossvalidation)
0.7007 ± 0.2565
Per class
Cross-validation details (10-fold Crossvalidation)
0.3864 ± 0.5093
Cross-validation details (10-fold Crossvalidation)
0.0693 ± 0.2704
Cross-validation details (10-fold Crossvalidation)
0.4542 ± 0.0902
Cross-validation details (10-fold Crossvalidation)
0.4791 ± 0.0218
Cross-validation details (10-fold Crossvalidation)
43
Per class
Cross-validation details (10-fold Crossvalidation)
0.7104 ± 0.232
Per class
Cross-validation details (10-fold Crossvalidation)
0.6977 ± 0.2612
Cross-validation details (10-fold Crossvalidation)
0.9682 ± 0.0639
Cross-validation details (10-fold Crossvalidation)
0.6977 ± 0.2612
Per class
Cross-validation details (10-fold Crossvalidation)
0.9481 ± 0.214
Cross-validation details (10-fold Crossvalidation)
0.4889 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
0.4783 ± 0.0962
Cross-validation details (10-fold Crossvalidation)
0.9782 ± 0.2233
Cross-validation details (10-fold Crossvalidation)