Run
10228495

Run 10228495

Task 3656 (Supervised Classification) diabetes_numeric Uploaded 15-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3771dd6e2ebd2d(n11=sklearn.pipeline.C58b62f16b1265(n12=sk learn.pipeline.C3771dd6e2eaa34(n13=sklearn.compose._column_transformer.C377 1dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c )),n15=sklearn.pipeline.C58b62f16b1214(n16=sklearn.compose._column_transfor mer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f 16b11c9))),n18=fastsklearnfeature.transformations.IdentityTransformation.C3 771dd6e2ebb9a,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.01
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state24615
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3771dd6e2ebd2d(n11=sklearn.pipeline.C58b62f16b1265(n12=sklearn.pipeline.C3771dd6e2eaa34(n13=sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c)),n15=sklearn.pipeline.C58b62f16b1214(n16=sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9))),n18=fastsklearnfeature.transformations.IdentityTransformation.C3771dd6e2ebb9a,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3771dd6e2ebd2d(n11=sklearn.pipeline.C58b62f16b1265(n12=sklearn.pipeline.C3771dd6e2eaa34(n13=sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c)),n15=sklearn.pipeline.C58b62f16b1214(n16=sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9))),n18=fastsklearnfeature.transformations.IdentityTransformation.C3771dd6e2ebb9a,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n18", "step_name": "n18"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58b62f16b1265(n12=sklearn.pipeline.C3771dd6e2eaa34(n13=sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c)),n15=sklearn.pipeline.C58b62f16b1214(n16=sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9)))(1)_n_jobsnull
sklearn.pipeline.C58b62f16b1265(n12=sklearn.pipeline.C3771dd6e2eaa34(n13=sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c)),n15=sklearn.pipeline.C58b62f16b1214(n16=sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n15", "step_name": "n15"}}]
sklearn.pipeline.C58b62f16b1265(n12=sklearn.pipeline.C3771dd6e2eaa34(n13=sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c)),n15=sklearn.pipeline.C58b62f16b1214(n16=sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9)))(1)_transformer_weightsnull
sklearn.pipeline.C3771dd6e2eaa34(n13=sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c))(1)_memorynull
sklearn.pipeline.C3771dd6e2eaa34(n13=sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}]
sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c)(1)_n_jobsnull
sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c)(1)_remainder"drop"
sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3771dd6e2ea788(n14=sklearn.preprocessing._function_transformer.C3771dd6e2ea55c)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n14", "step_name": "n14", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C3771dd6e2ea55c(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3771dd6e2ea55c(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3771dd6e2ea55c(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3771dd6e2ea55c(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dd6e2ea55c(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3771dd6e2ea55c(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dd6e2ea55c(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3771dd6e2ea55c(1)_validatefalse
sklearn.pipeline.C58b62f16b1214(n16=sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9))(1)_memorynull
sklearn.pipeline.C58b62f16b1214(n16=sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n16", "step_name": "n16"}}]
sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9)(1)_n_jobsnull
sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9)(1)_remainder"drop"
sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3771dd6e2eb314(n17=sklearn.preprocessing._function_transformer.C58b62f16b11c9)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n17", "step_name": "n17", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C58b62f16b11c9(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58b62f16b11c9(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58b62f16b11c9(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58b62f16b11c9(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58b62f16b11c9(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58b62f16b11c9(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58b62f16b11c9(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58b62f16b11c9(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C3771dd6e2ebb9a(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7036 ± 0.3471
Per class
Cross-validation details (10-fold Crossvalidation)
0.7007 ± 0.2565
Per class
Cross-validation details (10-fold Crossvalidation)
0.3864 ± 0.5093
Cross-validation details (10-fold Crossvalidation)
0.0693 ± 0.2704
Cross-validation details (10-fold Crossvalidation)
0.4542 ± 0.0902
Cross-validation details (10-fold Crossvalidation)
0.4791 ± 0.0218
Cross-validation details (10-fold Crossvalidation)
43
Per class
Cross-validation details (10-fold Crossvalidation)
0.7104 ± 0.232
Per class
Cross-validation details (10-fold Crossvalidation)
0.6977 ± 0.2612
Cross-validation details (10-fold Crossvalidation)
0.9682 ± 0.0639
Cross-validation details (10-fold Crossvalidation)
0.6977 ± 0.2612
Per class
Cross-validation details (10-fold Crossvalidation)
0.9481 ± 0.214
Cross-validation details (10-fold Crossvalidation)
0.4889 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
0.4783 ± 0.0962
Cross-validation details (10-fold Crossvalidation)
0.9782 ± 0.2233
Cross-validation details (10-fold Crossvalidation)