Run
10228492

Run 10228492

Task 3656 (Supervised Classification) diabetes_numeric Uploaded 15-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C58b62e5ed40e1(n19=sklearn.pipeline.C58b62e5ed4055(n20=skl earn.pipeline.C58b62e5ed3f01(n21=sklearn.compose._column_transformer.C58b62 e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95),n 23=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcfb 447415),n24=sklearn.pipeline.C58b62e5ed4002(n25=sklearn.compose._column_tra nsformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C5 8b62e5ed3f99),n27=fastsklearnfeature.transformations.OneDivisionTransformat ion.C3771dcfb447edb)),n28=fastsklearnfeature.transformations.IdentityTransf ormation.C3771dcfb44878c,c=sklearn.linear_model.logistic.LogisticRegression )(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state20784
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C58b62e5ed40e1(n19=sklearn.pipeline.C58b62e5ed4055(n20=sklearn.pipeline.C58b62e5ed3f01(n21=sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95),n23=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcfb447415),n24=sklearn.pipeline.C58b62e5ed4002(n25=sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99),n27=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcfb447edb)),n28=fastsklearnfeature.transformations.IdentityTransformation.C3771dcfb44878c,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C58b62e5ed40e1(n19=sklearn.pipeline.C58b62e5ed4055(n20=sklearn.pipeline.C58b62e5ed3f01(n21=sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95),n23=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcfb447415),n24=sklearn.pipeline.C58b62e5ed4002(n25=sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99),n27=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcfb447edb)),n28=fastsklearnfeature.transformations.IdentityTransformation.C3771dcfb44878c,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n19", "step_name": "n19"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n28", "step_name": "n28"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58b62e5ed4055(n20=sklearn.pipeline.C58b62e5ed3f01(n21=sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95),n23=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcfb447415),n24=sklearn.pipeline.C58b62e5ed4002(n25=sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99),n27=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcfb447edb))(1)_n_jobsnull
sklearn.pipeline.C58b62e5ed4055(n20=sklearn.pipeline.C58b62e5ed3f01(n21=sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95),n23=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcfb447415),n24=sklearn.pipeline.C58b62e5ed4002(n25=sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99),n27=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcfb447edb))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n20", "step_name": "n20"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n24", "step_name": "n24"}}]
sklearn.pipeline.C58b62e5ed4055(n20=sklearn.pipeline.C58b62e5ed3f01(n21=sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95),n23=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcfb447415),n24=sklearn.pipeline.C58b62e5ed4002(n25=sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99),n27=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcfb447edb))(1)_transformer_weightsnull
sklearn.pipeline.C58b62e5ed3f01(n21=sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95),n23=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcfb447415)(1)_memorynull
sklearn.pipeline.C58b62e5ed3f01(n21=sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95),n23=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcfb447415)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n21", "step_name": "n21"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n23", "step_name": "n23"}}]
sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95)(1)_n_jobsnull
sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95)(1)_remainder"drop"
sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58b62e5ed3e8e(n22=sklearn.preprocessing._function_transformer.C3771dcfb446f95)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n22", "step_name": "n22", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3771dcfb446f95(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3771dcfb446f95(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3771dcfb446f95(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3771dcfb446f95(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dcfb446f95(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3771dcfb446f95(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dcfb446f95(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3771dcfb446f95(1)_validatefalse
sklearn.pipeline.C58b62e5ed4002(n25=sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99),n27=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcfb447edb)(1)_memorynull
sklearn.pipeline.C58b62e5ed4002(n25=sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99),n27=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcfb447edb)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n25", "step_name": "n25"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n27", "step_name": "n27"}}]
sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99)(1)_n_jobsnull
sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99)(1)_remainder"drop"
sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3771dcfb447d14(n26=sklearn.preprocessing._function_transformer.C58b62e5ed3f99)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n26", "step_name": "n26", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C58b62e5ed3f99(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58b62e5ed3f99(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58b62e5ed3f99(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58b62e5ed3f99(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58b62e5ed3f99(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58b62e5ed3f99(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58b62e5ed3f99(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58b62e5ed3f99(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C3771dcfb44878c(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5928 ± 0.403
Per class
Cross-validation details (10-fold Crossvalidation)
0.6518 ± 0.1174
Per class
Cross-validation details (10-fold Crossvalidation)
0.2879 ± 0.2704
Cross-validation details (10-fold Crossvalidation)
-0.0693 ± 0.0797
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4791 ± 0.0218
Cross-validation details (10-fold Crossvalidation)
43
Per class
Cross-validation details (10-fold Crossvalidation)
0.738 ± 0.153
Per class
Cross-validation details (10-fold Crossvalidation)
0.6977 ± 0.1165
Cross-validation details (10-fold Crossvalidation)
0.9682 ± 0.0639
Cross-validation details (10-fold Crossvalidation)
0.6977 ± 0.1165
Per class
Cross-validation details (10-fold Crossvalidation)
1.0435 ± 0.0485
Cross-validation details (10-fold Crossvalidation)
0.4889 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1.0224 ± 0.0483
Cross-validation details (10-fold Crossvalidation)