Run
10228491

Run 10228491

Task 3656 (Supervised Classification) diabetes_numeric Uploaded 15-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3771dcc3099811(n9=sklearn.pipeline.C3771dcc3098875(n10=sk learn.pipeline.C3771dcc3095ac9(n11=sklearn.compose._column_transformer.C377 1dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81 ),n13=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771d cc309514c),n14=sklearn.pipeline.C3771dcc3097adf(n15=sklearn.compose._column _transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transforme r.C3771dcc3096eb8),n17=fastsklearnfeature.transformations.OneDivisionTransf ormation.C3771dcc3097742)),n18=fastsklearnfeature.transformations.IdentityT ransformation.C3771dcc309944c,c=sklearn.linear_model.logistic.LogisticRegre ssion)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state5800
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3771dcc3099811(n9=sklearn.pipeline.C3771dcc3098875(n10=sklearn.pipeline.C3771dcc3095ac9(n11=sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81),n13=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcc309514c),n14=sklearn.pipeline.C3771dcc3097adf(n15=sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8),n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcc3097742)),n18=fastsklearnfeature.transformations.IdentityTransformation.C3771dcc309944c,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3771dcc3099811(n9=sklearn.pipeline.C3771dcc3098875(n10=sklearn.pipeline.C3771dcc3095ac9(n11=sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81),n13=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcc309514c),n14=sklearn.pipeline.C3771dcc3097adf(n15=sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8),n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcc3097742)),n18=fastsklearnfeature.transformations.IdentityTransformation.C3771dcc309944c,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n18", "step_name": "n18"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3771dcc3098875(n10=sklearn.pipeline.C3771dcc3095ac9(n11=sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81),n13=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcc309514c),n14=sklearn.pipeline.C3771dcc3097adf(n15=sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8),n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcc3097742))(1)_n_jobsnull
sklearn.pipeline.C3771dcc3098875(n10=sklearn.pipeline.C3771dcc3095ac9(n11=sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81),n13=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcc309514c),n14=sklearn.pipeline.C3771dcc3097adf(n15=sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8),n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcc3097742))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n14", "step_name": "n14"}}]
sklearn.pipeline.C3771dcc3098875(n10=sklearn.pipeline.C3771dcc3095ac9(n11=sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81),n13=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcc309514c),n14=sklearn.pipeline.C3771dcc3097adf(n15=sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8),n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcc3097742))(1)_transformer_weightsnull
sklearn.pipeline.C3771dcc3095ac9(n11=sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81),n13=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcc309514c)(1)_memorynull
sklearn.pipeline.C3771dcc3095ac9(n11=sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81),n13=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3771dcc309514c)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}]
sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81)(1)_n_jobsnull
sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81)(1)_remainder"drop"
sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3771dcc3094260(n12=sklearn.preprocessing._function_transformer.C3771dcc3093b81)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3771dcc3093b81(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3771dcc3093b81(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3771dcc3093b81(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3771dcc3093b81(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dcc3093b81(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3771dcc3093b81(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dcc3093b81(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3771dcc3093b81(1)_validatefalse
sklearn.pipeline.C3771dcc3097adf(n15=sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8),n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcc3097742)(1)_memorynull
sklearn.pipeline.C3771dcc3097adf(n15=sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8),n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3771dcc3097742)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n15", "step_name": "n15"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n17", "step_name": "n17"}}]
sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8)(1)_n_jobsnull
sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8)(1)_remainder"drop"
sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3771dcc30971f3(n16=sklearn.preprocessing._function_transformer.C3771dcc3096eb8)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n16", "step_name": "n16", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3771dcc3096eb8(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3771dcc3096eb8(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3771dcc3096eb8(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3771dcc3096eb8(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dcc3096eb8(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3771dcc3096eb8(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3771dcc3096eb8(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3771dcc3096eb8(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C3771dcc309944c(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5928 ± 0.403
Per class
Cross-validation details (10-fold Crossvalidation)
0.6518 ± 0.1174
Per class
Cross-validation details (10-fold Crossvalidation)
0.2879 ± 0.2704
Cross-validation details (10-fold Crossvalidation)
-0.0693 ± 0.0797
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4791 ± 0.0218
Cross-validation details (10-fold Crossvalidation)
43
Per class
Cross-validation details (10-fold Crossvalidation)
0.738 ± 0.153
Per class
Cross-validation details (10-fold Crossvalidation)
0.6977 ± 0.1165
Cross-validation details (10-fold Crossvalidation)
0.9682 ± 0.0639
Cross-validation details (10-fold Crossvalidation)
0.6977 ± 0.1165
Per class
Cross-validation details (10-fold Crossvalidation)
1.0435 ± 0.0485
Cross-validation details (10-fold Crossvalidation)
0.4889 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1.0224 ± 0.0483
Cross-validation details (10-fold Crossvalidation)