Run
10228464

Run 10228464

Task 40 (Supervised Classification) glass Uploaded 08-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C376bea4bb31b70(n20=sklearn.pipeline.C376bea4bb3177f(n21=s klearn.pipeline.C376bea4bb30daa(n22=sklearn.compose._column_transformer.C37 6bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4 ),n24=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretize rTransformation.C376bea4bb30b5a),n25=sklearn.pipeline.C376bea4bb31511(n26=s klearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessin g._function_transformer.C58acaa12b81e6))),n28=fastsklearnfeature.transforma tions.IdentityTransformation.C376bea4bb31a8b,c=sklearn.linear_model.logisti c.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.1
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state16570
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C376bea4bb31b70(n20=sklearn.pipeline.C376bea4bb3177f(n21=sklearn.pipeline.C376bea4bb30daa(n22=sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4),n24=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376bea4bb30b5a),n25=sklearn.pipeline.C376bea4bb31511(n26=sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6))),n28=fastsklearnfeature.transformations.IdentityTransformation.C376bea4bb31a8b,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C376bea4bb31b70(n20=sklearn.pipeline.C376bea4bb3177f(n21=sklearn.pipeline.C376bea4bb30daa(n22=sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4),n24=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376bea4bb30b5a),n25=sklearn.pipeline.C376bea4bb31511(n26=sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6))),n28=fastsklearnfeature.transformations.IdentityTransformation.C376bea4bb31a8b,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n20", "step_name": "n20"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n28", "step_name": "n28"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C376bea4bb3177f(n21=sklearn.pipeline.C376bea4bb30daa(n22=sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4),n24=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376bea4bb30b5a),n25=sklearn.pipeline.C376bea4bb31511(n26=sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6)))(1)_n_jobsnull
sklearn.pipeline.C376bea4bb3177f(n21=sklearn.pipeline.C376bea4bb30daa(n22=sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4),n24=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376bea4bb30b5a),n25=sklearn.pipeline.C376bea4bb31511(n26=sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n21", "step_name": "n21"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n25", "step_name": "n25"}}]
sklearn.pipeline.C376bea4bb3177f(n21=sklearn.pipeline.C376bea4bb30daa(n22=sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4),n24=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376bea4bb30b5a),n25=sklearn.pipeline.C376bea4bb31511(n26=sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6)))(1)_transformer_weightsnull
sklearn.pipeline.C376bea4bb30daa(n22=sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4),n24=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376bea4bb30b5a)(1)_memorynull
sklearn.pipeline.C376bea4bb30daa(n22=sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4),n24=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376bea4bb30b5a)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n22", "step_name": "n22"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n24", "step_name": "n24"}}]
sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4)(1)_n_jobsnull
sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4)(1)_remainder"drop"
sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376bea4bb3095c(n23=sklearn.preprocessing._function_transformer.C58acaa12b80c4)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n23", "step_name": "n23", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C58acaa12b80c4(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58acaa12b80c4(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58acaa12b80c4(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58acaa12b80c4(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58acaa12b80c4(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58acaa12b80c4(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58acaa12b80c4(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58acaa12b80c4(1)_validatefalse
sklearn.pipeline.C376bea4bb31511(n26=sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6))(1)_memorynull
sklearn.pipeline.C376bea4bb31511(n26=sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n26", "step_name": "n26"}}]
sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6)(1)_n_jobsnull
sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6)(1)_remainder"drop"
sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376bea4bb313d6(n27=sklearn.preprocessing._function_transformer.C58acaa12b81e6)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n27", "step_name": "n27", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C58acaa12b81e6(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58acaa12b81e6(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58acaa12b81e6(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58acaa12b81e6(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58acaa12b81e6(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58acaa12b81e6(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58acaa12b81e6(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58acaa12b81e6(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C376bea4bb31a8b(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7848 ± 0.0982
Per class
Cross-validation details (10-fold Crossvalidation)
0.5744
Per class
0.4609 ± 0.1523
Cross-validation details (10-fold Crossvalidation)
0.2264 ± 0.0409
Cross-validation details (10-fold Crossvalidation)
0.2027 ± 0.0073
Cross-validation details (10-fold Crossvalidation)
0.2116 ± 0.0015
Cross-validation details (10-fold Crossvalidation)
214
Per class
Cross-validation details (10-fold Crossvalidation)
0.6179
Per class
0.6075 ± 0.1139
Cross-validation details (10-fold Crossvalidation)
2.1835 ± 0.0468
Cross-validation details (10-fold Crossvalidation)
0.6075 ± 0.1139
Per class
Cross-validation details (10-fold Crossvalidation)
0.9578 ± 0.0336
Cross-validation details (10-fold Crossvalidation)
0.3244 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.3129 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
0.9645 ± 0.0366
Cross-validation details (10-fold Crossvalidation)