Run
10228463

Run 10228463

Task 40 (Supervised Classification) glass Uploaded 08-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C376be80cb44285(n11=sklearn.pipeline.C58aca67ab9fd3(n12=sk learn.pipeline.C376be80cb431d7(n13=sklearn.compose._column_transformer.Ce30 1aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996),n 15=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTr ansformation.C376be80cb42e92),n16=sklearn.pipeline.C376be80cb43b73(n17=skle arn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._f unction_transformer.C376be80cb43905))),n19=fastsklearnfeature.transformatio ns.IdentityTransformation.C376be80cb4417a,c=sklearn.linear_model.logistic.L ogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.1
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state65038
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C376be80cb44285(n11=sklearn.pipeline.C58aca67ab9fd3(n12=sklearn.pipeline.C376be80cb431d7(n13=sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996),n15=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376be80cb42e92),n16=sklearn.pipeline.C376be80cb43b73(n17=sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905))),n19=fastsklearnfeature.transformations.IdentityTransformation.C376be80cb4417a,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C376be80cb44285(n11=sklearn.pipeline.C58aca67ab9fd3(n12=sklearn.pipeline.C376be80cb431d7(n13=sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996),n15=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376be80cb42e92),n16=sklearn.pipeline.C376be80cb43b73(n17=sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905))),n19=fastsklearnfeature.transformations.IdentityTransformation.C376be80cb4417a,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n19", "step_name": "n19"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58aca67ab9fd3(n12=sklearn.pipeline.C376be80cb431d7(n13=sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996),n15=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376be80cb42e92),n16=sklearn.pipeline.C376be80cb43b73(n17=sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905)))(1)_n_jobsnull
sklearn.pipeline.C58aca67ab9fd3(n12=sklearn.pipeline.C376be80cb431d7(n13=sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996),n15=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376be80cb42e92),n16=sklearn.pipeline.C376be80cb43b73(n17=sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n16", "step_name": "n16"}}]
sklearn.pipeline.C58aca67ab9fd3(n12=sklearn.pipeline.C376be80cb431d7(n13=sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996),n15=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376be80cb42e92),n16=sklearn.pipeline.C376be80cb43b73(n17=sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905)))(1)_transformer_weightsnull
sklearn.pipeline.C376be80cb431d7(n13=sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996),n15=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376be80cb42e92)(1)_memorynull
sklearn.pipeline.C376be80cb431d7(n13=sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996),n15=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C376be80cb42e92)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n15", "step_name": "n15"}}]
sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996)(1)_n_jobsnull
sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996)(1)_remainder"drop"
sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996)(1)_transformer_weightsnull
sklearn.compose._column_transformer.Ce301aa2ff05(n14=sklearn.preprocessing._function_transformer.C376be80cb42996)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n14", "step_name": "n14", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C376be80cb42996(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376be80cb42996(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376be80cb42996(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376be80cb42996(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376be80cb42996(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376be80cb42996(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376be80cb42996(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376be80cb42996(1)_validatefalse
sklearn.pipeline.C376be80cb43b73(n17=sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905))(1)_memorynull
sklearn.pipeline.C376be80cb43b73(n17=sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n17", "step_name": "n17"}}]
sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905)(1)_n_jobsnull
sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905)(1)_remainder"drop"
sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58aca67ab9f6a(n18=sklearn.preprocessing._function_transformer.C376be80cb43905)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n18", "step_name": "n18", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C376be80cb43905(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376be80cb43905(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376be80cb43905(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376be80cb43905(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376be80cb43905(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376be80cb43905(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376be80cb43905(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376be80cb43905(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C376be80cb4417a(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7848 ± 0.0982
Per class
Cross-validation details (10-fold Crossvalidation)
0.5744
Per class
0.4609 ± 0.1523
Cross-validation details (10-fold Crossvalidation)
0.2264 ± 0.0409
Cross-validation details (10-fold Crossvalidation)
0.2027 ± 0.0073
Cross-validation details (10-fold Crossvalidation)
0.2116 ± 0.0015
Cross-validation details (10-fold Crossvalidation)
214
Per class
Cross-validation details (10-fold Crossvalidation)
0.6179
Per class
0.6075 ± 0.1139
Cross-validation details (10-fold Crossvalidation)
2.1835 ± 0.0468
Cross-validation details (10-fold Crossvalidation)
0.6075 ± 0.1139
Per class
Cross-validation details (10-fold Crossvalidation)
0.9578 ± 0.0336
Cross-validation details (10-fold Crossvalidation)
0.3244 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.3129 ± 0.0121
Cross-validation details (10-fold Crossvalidation)
0.9645 ± 0.0366
Cross-validation details (10-fold Crossvalidation)