Run
10228460

Run 10228460

Task 14968 (Supervised Classification) cylinder-bands Uploaded 07-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C58abd672d9d03(n6=sklearn.pipeline.C376b6607c81339(n7=skle arn.pipeline.C376b6607c7f189(n8=sklearn.compose._column_transformer.C376b66 07c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8)),n 10=sklearn.pipeline.C376b6607c80ade(n11=sklearn.compose._column_transformer .C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d 99eb))),n13=fastsklearnfeature.transformations.HigherOrderCommutativeTransf ormation.C58abd672d9c9d,c=sklearn.linear_model.logistic.LogisticRegression) (1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state545
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C58abd672d9d03(n6=sklearn.pipeline.C376b6607c81339(n7=sklearn.pipeline.C376b6607c7f189(n8=sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8)),n10=sklearn.pipeline.C376b6607c80ade(n11=sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb))),n13=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58abd672d9c9d,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C58abd672d9d03(n6=sklearn.pipeline.C376b6607c81339(n7=sklearn.pipeline.C376b6607c7f189(n8=sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8)),n10=sklearn.pipeline.C376b6607c80ade(n11=sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb))),n13=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58abd672d9c9d,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C376b6607c81339(n7=sklearn.pipeline.C376b6607c7f189(n8=sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8)),n10=sklearn.pipeline.C376b6607c80ade(n11=sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb)))(1)_n_jobsnull
sklearn.pipeline.C376b6607c81339(n7=sklearn.pipeline.C376b6607c7f189(n8=sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8)),n10=sklearn.pipeline.C376b6607c80ade(n11=sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}]
sklearn.pipeline.C376b6607c81339(n7=sklearn.pipeline.C376b6607c7f189(n8=sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8)),n10=sklearn.pipeline.C376b6607c80ade(n11=sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb)))(1)_transformer_weightsnull
sklearn.pipeline.C376b6607c7f189(n8=sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8))(1)_memorynull
sklearn.pipeline.C376b6607c7f189(n8=sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8"}}]
sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8)(1)_n_jobsnull
sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8)(1)_remainder"drop"
sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376b6607c7eab3(n9=sklearn.preprocessing._function_transformer.C376b6607c7e4d8)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9", "argument_1": [28]}}]
sklearn.preprocessing._function_transformer.C376b6607c7e4d8(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376b6607c7e4d8(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376b6607c7e4d8(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376b6607c7e4d8(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376b6607c7e4d8(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376b6607c7e4d8(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376b6607c7e4d8(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376b6607c7e4d8(1)_validatefalse
sklearn.pipeline.C376b6607c80ade(n11=sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb))(1)_memorynull
sklearn.pipeline.C376b6607c80ade(n11=sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}]
sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb)(1)_n_jobsnull
sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb)(1)_remainder"drop"
sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376b6607c80687(n12=sklearn.preprocessing._function_transformer.C58abd672d99eb)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12", "argument_1": [36]}}]
sklearn.preprocessing._function_transformer.C58abd672d99eb(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58abd672d99eb(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58abd672d99eb(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58abd672d99eb(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58abd672d99eb(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58abd672d99eb(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58abd672d99eb(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58abd672d99eb(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58abd672d9c9d(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanprod"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58abd672d9c9d(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58abd672d9c9d(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.6304 ± 0.0531
Per class
Cross-validation details (10-fold Crossvalidation)
0.6472 ± 0.0592
Per class
Cross-validation details (10-fold Crossvalidation)
0.2901 ± 0.1102
Cross-validation details (10-fold Crossvalidation)
0.1177 ± 0.0449
Cross-validation details (10-fold Crossvalidation)
0.4363 ± 0.0192
Cross-validation details (10-fold Crossvalidation)
0.4879 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
540
Per class
Cross-validation details (10-fold Crossvalidation)
0.6963 ± 0.0704
Per class
Cross-validation details (10-fold Crossvalidation)
0.6778 ± 0.0488
Cross-validation details (10-fold Crossvalidation)
0.9825 ± 0.0035
Cross-validation details (10-fold Crossvalidation)
0.6778 ± 0.0488
Per class
Cross-validation details (10-fold Crossvalidation)
0.8941 ± 0.0393
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.4637 ± 0.0163
Cross-validation details (10-fold Crossvalidation)
0.9387 ± 0.0333
Cross-validation details (10-fold Crossvalidation)