Run
10228442

Run 10228442

Task 9971 (Supervised Classification) ilpd Uploaded 06-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C376aa765bdbd8f(n14=sklearn.pipeline.C376aa765bda1b4(n15=s klearn.pipeline.C376aa765bd7426(n16=sklearn.compose._column_transformer.C58 aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384 )),n18=sklearn.pipeline.C376aa765bd9650(n19=sklearn.compose._column_transfo rmer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa7 65bd8c60))),n21=fastsklearnfeature.transformations.HigherOrderCommutativeTr ansformation.C376aa765bdb103,n22=fastsklearnfeature.transformations.MinMaxS calingTransformation.C376aa765bdb751,c=sklearn.linear_model.logistic.Logist icRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state41848
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C376aa765bdbd8f(n14=sklearn.pipeline.C376aa765bda1b4(n15=sklearn.pipeline.C376aa765bd7426(n16=sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384)),n18=sklearn.pipeline.C376aa765bd9650(n19=sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60))),n21=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C376aa765bdb103,n22=fastsklearnfeature.transformations.MinMaxScalingTransformation.C376aa765bdb751,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C376aa765bdbd8f(n14=sklearn.pipeline.C376aa765bda1b4(n15=sklearn.pipeline.C376aa765bd7426(n16=sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384)),n18=sklearn.pipeline.C376aa765bd9650(n19=sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60))),n21=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C376aa765bdb103,n22=fastsklearnfeature.transformations.MinMaxScalingTransformation.C376aa765bdb751,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n14", "step_name": "n14"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n21", "step_name": "n21"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n22", "step_name": "n22"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C376aa765bda1b4(n15=sklearn.pipeline.C376aa765bd7426(n16=sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384)),n18=sklearn.pipeline.C376aa765bd9650(n19=sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60)))(1)_n_jobsnull
sklearn.pipeline.C376aa765bda1b4(n15=sklearn.pipeline.C376aa765bd7426(n16=sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384)),n18=sklearn.pipeline.C376aa765bd9650(n19=sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n15", "step_name": "n15"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n18", "step_name": "n18"}}]
sklearn.pipeline.C376aa765bda1b4(n15=sklearn.pipeline.C376aa765bd7426(n16=sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384)),n18=sklearn.pipeline.C376aa765bd9650(n19=sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60)))(1)_transformer_weightsnull
sklearn.pipeline.C376aa765bd7426(n16=sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384))(1)_memorynull
sklearn.pipeline.C376aa765bd7426(n16=sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n16", "step_name": "n16"}}]
sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384)(1)_n_jobsnull
sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384)(1)_remainder"drop"
sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58aaa56f9577a(n17=sklearn.preprocessing._function_transformer.C376aa765bd6384)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n17", "step_name": "n17", "argument_1": [5]}}]
sklearn.preprocessing._function_transformer.C376aa765bd6384(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376aa765bd6384(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376aa765bd6384(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376aa765bd6384(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa765bd6384(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376aa765bd6384(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa765bd6384(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376aa765bd6384(1)_validatefalse
sklearn.pipeline.C376aa765bd9650(n19=sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60))(1)_memorynull
sklearn.pipeline.C376aa765bd9650(n19=sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n19", "step_name": "n19"}}]
sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60)(1)_n_jobsnull
sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60)(1)_remainder"drop"
sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58aaa56f95b41(n20=sklearn.preprocessing._function_transformer.C376aa765bd8c60)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n20", "step_name": "n20", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C376aa765bd8c60(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376aa765bd8c60(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376aa765bd8c60(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376aa765bd8c60(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa765bd8c60(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376aa765bd8c60(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa765bd8c60(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376aa765bd8c60(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C376aa765bdb103(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanprod"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C376aa765bdb103(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C376aa765bdb103(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7005 ± 0.0666
Per class
Cross-validation details (10-fold Crossvalidation)
0.6689 ± 0.0835
Per class
Cross-validation details (10-fold Crossvalidation)
0.1495 ± 0.1172
Cross-validation details (10-fold Crossvalidation)
-0.3953 ± 0.0188
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4091 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
583
Per class
Cross-validation details (10-fold Crossvalidation)
0.6679 ± 0.0983
Per class
Cross-validation details (10-fold Crossvalidation)
0.7084 ± 0.0888
Cross-validation details (10-fold Crossvalidation)
0.8641 ± 0.01
Cross-validation details (10-fold Crossvalidation)
0.7084 ± 0.0888
Per class
Cross-validation details (10-fold Crossvalidation)
1.2221 ± 0.0097
Cross-validation details (10-fold Crossvalidation)
0.4521 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
1.1059 ± 0.0088
Cross-validation details (10-fold Crossvalidation)