Run
10228441

Run 10228441

Task 9971 (Supervised Classification) ilpd Uploaded 06-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C376aa637127eab(n6=sklearn.pipeline.C376aa637125d1a(n7=skl earn.pipeline.C58aaa38b50222(n8=sklearn.compose._column_transformer.C16b2d9 feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50)),n10= sklearn.pipeline.C376aa637124a14(n11=sklearn.compose._column_transformer.C3 76aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f 3))),n13=fastsklearnfeature.transformations.FastGroupByThenTransformation.C 376aa6371275f3,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state38419
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C376aa637127eab(n6=sklearn.pipeline.C376aa637125d1a(n7=sklearn.pipeline.C58aaa38b50222(n8=sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50)),n10=sklearn.pipeline.C376aa637124a14(n11=sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3))),n13=fastsklearnfeature.transformations.FastGroupByThenTransformation.C376aa6371275f3,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C376aa637127eab(n6=sklearn.pipeline.C376aa637125d1a(n7=sklearn.pipeline.C58aaa38b50222(n8=sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50)),n10=sklearn.pipeline.C376aa637124a14(n11=sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3))),n13=fastsklearnfeature.transformations.FastGroupByThenTransformation.C376aa6371275f3,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C376aa637125d1a(n7=sklearn.pipeline.C58aaa38b50222(n8=sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50)),n10=sklearn.pipeline.C376aa637124a14(n11=sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3)))(1)_n_jobsnull
sklearn.pipeline.C376aa637125d1a(n7=sklearn.pipeline.C58aaa38b50222(n8=sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50)),n10=sklearn.pipeline.C376aa637124a14(n11=sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}]
sklearn.pipeline.C376aa637125d1a(n7=sklearn.pipeline.C58aaa38b50222(n8=sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50)),n10=sklearn.pipeline.C376aa637124a14(n11=sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3)))(1)_transformer_weightsnull
sklearn.pipeline.C58aaa38b50222(n8=sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50))(1)_memorynull
sklearn.pipeline.C58aaa38b50222(n8=sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8"}}]
sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50)(1)_n_jobsnull
sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50)(1)_remainder"drop"
sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C16b2d9feccd(n9=sklearn.preprocessing._function_transformer.C376aa63711fc50)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C376aa63711fc50(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376aa63711fc50(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376aa63711fc50(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376aa63711fc50(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa63711fc50(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376aa63711fc50(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa63711fc50(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376aa63711fc50(1)_validatefalse
sklearn.pipeline.C376aa637124a14(n11=sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3))(1)_memorynull
sklearn.pipeline.C376aa637124a14(n11=sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}]
sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3)(1)_n_jobsnull
sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3)(1)_remainder"drop"
sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376aa6371241df(n12=sklearn.preprocessing._function_transformer.C58aaa38b505f3)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C58aaa38b505f3(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58aaa38b505f3(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58aaa38b505f3(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58aaa38b505f3(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58aaa38b505f3(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58aaa38b505f3(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58aaa38b505f3(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58aaa38b505f3(1)_validatefalse
fastsklearnfeature.transformations.FastGroupByThenTransformation.C376aa6371275f3(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanmax"}
fastsklearnfeature.transformations.FastGroupByThenTransformation.C376aa6371275f3(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5039 ± 0.0263
Per class
Cross-validation details (10-fold Crossvalidation)
0.612 ± 0.0341
Per class
Cross-validation details (10-fold Crossvalidation)
0.0298 ± 0.0718
Cross-validation details (10-fold Crossvalidation)
-0.3954 ± 0.0188
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4091 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
583
Per class
Cross-validation details (10-fold Crossvalidation)
0.6556 ± 0.1495
Per class
Cross-validation details (10-fold Crossvalidation)
0.7136 ± 0.0228
Cross-validation details (10-fold Crossvalidation)
0.8641 ± 0.01
Cross-validation details (10-fold Crossvalidation)
0.7136 ± 0.0228
Per class
Cross-validation details (10-fold Crossvalidation)
1.2222 ± 0.0097
Cross-validation details (10-fold Crossvalidation)
0.4521 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
1.1059 ± 0.0088
Cross-validation details (10-fold Crossvalidation)