Run
10228412

Run 10228412

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 05-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C37698160989312(n18=sklearn.pipeline.C58a8cf00f40e1(n19=sk learn.pipeline.C58a8cf00f3ea2(n20=sklearn.compose._column_transformer.C3769 81609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3) ,n22=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizer Transformation.C37698160986c62),n23=sklearn.pipeline.C37698160988325(n24=sk learn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing ._function_transformer.C37698160987e1b))),n26=fastsklearnfeature.transforma tions.FastGroupByThenTransformation.C3769816098901e,c=sklearn.linear_model. logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state2652
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C37698160989312(n18=sklearn.pipeline.C58a8cf00f40e1(n19=sklearn.pipeline.C58a8cf00f3ea2(n20=sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3),n22=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C37698160986c62),n23=sklearn.pipeline.C37698160988325(n24=sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b))),n26=fastsklearnfeature.transformations.FastGroupByThenTransformation.C3769816098901e,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C37698160989312(n18=sklearn.pipeline.C58a8cf00f40e1(n19=sklearn.pipeline.C58a8cf00f3ea2(n20=sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3),n22=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C37698160986c62),n23=sklearn.pipeline.C37698160988325(n24=sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b))),n26=fastsklearnfeature.transformations.FastGroupByThenTransformation.C3769816098901e,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n18", "step_name": "n18"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n26", "step_name": "n26"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58a8cf00f40e1(n19=sklearn.pipeline.C58a8cf00f3ea2(n20=sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3),n22=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C37698160986c62),n23=sklearn.pipeline.C37698160988325(n24=sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b)))(1)_n_jobsnull
sklearn.pipeline.C58a8cf00f40e1(n19=sklearn.pipeline.C58a8cf00f3ea2(n20=sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3),n22=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C37698160986c62),n23=sklearn.pipeline.C37698160988325(n24=sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n19", "step_name": "n19"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n23", "step_name": "n23"}}]
sklearn.pipeline.C58a8cf00f40e1(n19=sklearn.pipeline.C58a8cf00f3ea2(n20=sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3),n22=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C37698160986c62),n23=sklearn.pipeline.C37698160988325(n24=sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b)))(1)_transformer_weightsnull
sklearn.pipeline.C58a8cf00f3ea2(n20=sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3),n22=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C37698160986c62)(1)_memorynull
sklearn.pipeline.C58a8cf00f3ea2(n20=sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3),n22=fastsklearnfeature.transformations.mdlp_discretization.MDLPDiscretizerTransformation.C37698160986c62)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n20", "step_name": "n20"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n22", "step_name": "n22"}}]
sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3)(1)_n_jobsnull
sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3)(1)_remainder"drop"
sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376981609866eb(n21=sklearn.preprocessing._function_transformer.C376981609862f3)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n21", "step_name": "n21", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C376981609862f3(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376981609862f3(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376981609862f3(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376981609862f3(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376981609862f3(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376981609862f3(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376981609862f3(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376981609862f3(1)_validatefalse
sklearn.pipeline.C37698160988325(n24=sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b))(1)_memorynull
sklearn.pipeline.C37698160988325(n24=sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n24", "step_name": "n24"}}]
sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b)(1)_n_jobsnull
sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b)(1)_remainder"drop"
sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37698160988007(n25=sklearn.preprocessing._function_transformer.C37698160987e1b)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n25", "step_name": "n25", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C37698160987e1b(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37698160987e1b(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37698160987e1b(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37698160987e1b(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37698160987e1b(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37698160987e1b(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37698160987e1b(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37698160987e1b(1)_validatefalse
fastsklearnfeature.transformations.FastGroupByThenTransformation.C3769816098901e(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanmax"}
fastsklearnfeature.transformations.FastGroupByThenTransformation.C3769816098901e(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5146 ± 0.0315
Per class
Cross-validation details (10-fold Crossvalidation)
0.6912 ± 0.0305
Per class
Cross-validation details (10-fold Crossvalidation)
0.0851 ± 0.089
Cross-validation details (10-fold Crossvalidation)
-0.7061 ± 0.0184
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.757 ± 0.1091
Per class
Cross-validation details (10-fold Crossvalidation)
0.7714 ± 0.0229
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.7714 ± 0.0229
Per class
Cross-validation details (10-fold Crossvalidation)
1.3771 ± 0.0087
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0
Cross-validation details (10-fold Crossvalidation)
1.174 ± 0.0074
Cross-validation details (10-fold Crossvalidation)