Run
10228391

Run 10228391

Task 59 (Supervised Classification) iris Uploaded 04-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C376922a220d28b(n11=sklearn.pipeline.C58a83769ce093(n12=sk learn.pipeline.C376922a220a431(n13=sklearn.compose._column_transformer.C58a 83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5) ),n15=sklearn.pipeline.C376922a220be13(n16=sklearn.compose._column_transfor mer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922 a220b5cb))),n18=fastsklearnfeature.transformations.IdentityTransformation.C 376922a220ced2,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.1
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state31279
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C376922a220d28b(n11=sklearn.pipeline.C58a83769ce093(n12=sklearn.pipeline.C376922a220a431(n13=sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5)),n15=sklearn.pipeline.C376922a220be13(n16=sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb))),n18=fastsklearnfeature.transformations.IdentityTransformation.C376922a220ced2,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C376922a220d28b(n11=sklearn.pipeline.C58a83769ce093(n12=sklearn.pipeline.C376922a220a431(n13=sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5)),n15=sklearn.pipeline.C376922a220be13(n16=sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb))),n18=fastsklearnfeature.transformations.IdentityTransformation.C376922a220ced2,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n18", "step_name": "n18"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58a83769ce093(n12=sklearn.pipeline.C376922a220a431(n13=sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5)),n15=sklearn.pipeline.C376922a220be13(n16=sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb)))(1)_n_jobsnull
sklearn.pipeline.C58a83769ce093(n12=sklearn.pipeline.C376922a220a431(n13=sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5)),n15=sklearn.pipeline.C376922a220be13(n16=sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n15", "step_name": "n15"}}]
sklearn.pipeline.C58a83769ce093(n12=sklearn.pipeline.C376922a220a431(n13=sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5)),n15=sklearn.pipeline.C376922a220be13(n16=sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb)))(1)_transformer_weightsnull
sklearn.pipeline.C376922a220a431(n13=sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5))(1)_memorynull
sklearn.pipeline.C376922a220a431(n13=sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}]
sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5)(1)_n_jobsnull
sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5)(1)_remainder"drop"
sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58a83769cdc96(n14=sklearn.preprocessing._function_transformer.C376922a22097d5)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n14", "step_name": "n14", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C376922a22097d5(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376922a22097d5(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376922a22097d5(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376922a22097d5(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376922a22097d5(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376922a22097d5(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376922a22097d5(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376922a22097d5(1)_validatefalse
sklearn.pipeline.C376922a220be13(n16=sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb))(1)_memorynull
sklearn.pipeline.C376922a220be13(n16=sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n16", "step_name": "n16"}}]
sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb)(1)_n_jobsnull
sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb)(1)_remainder"drop"
sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376922a220b9e2(n17=sklearn.preprocessing._function_transformer.C376922a220b5cb)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n17", "step_name": "n17", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C376922a220b5cb(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376922a220b5cb(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376922a220b5cb(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376922a220b5cb(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376922a220b5cb(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376922a220b5cb(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376922a220b5cb(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376922a220b5cb(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C376922a220ced2(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9969 ± 0.0047
Per class
Cross-validation details (10-fold Crossvalidation)
0.9667 ± 0.0355
Per class
Cross-validation details (10-fold Crossvalidation)
0.95 ± 0.0527
Cross-validation details (10-fold Crossvalidation)
0.7054 ± 0.0292
Cross-validation details (10-fold Crossvalidation)
0.1747 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
0.4444
Cross-validation details (10-fold Crossvalidation)
150
Per class
Cross-validation details (10-fold Crossvalidation)
0.9668 ± 0.0293
Per class
Cross-validation details (10-fold Crossvalidation)
0.9667 ± 0.0351
Cross-validation details (10-fold Crossvalidation)
1.585
Cross-validation details (10-fold Crossvalidation)
0.9667 ± 0.0351
Per class
Cross-validation details (10-fold Crossvalidation)
0.393 ± 0.0333
Cross-validation details (10-fold Crossvalidation)
0.4714
Cross-validation details (10-fold Crossvalidation)
0.2324 ± 0.0187
Cross-validation details (10-fold Crossvalidation)
0.4929 ± 0.0397
Cross-validation details (10-fold Crossvalidation)