Run
10228388

Run 10228388

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 04-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C376921ef9f9a61(n9=sklearn.pipeline.C58a8364c3288c(n10=skl earn.pipeline.C376921ef9f88f7(n11=sklearn.compose._column_transformer.C58a8 364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6), n13=fastsklearnfeature.transformations.OneDivisionTransformation.C376921ef9 f8709),n14=sklearn.pipeline.C376921ef9f92b5(n15=sklearn.compose._column_tra nsformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C3 76921ef9f9052))),n17=fastsklearnfeature.transformations.HigherOrderCommutat iveTransformation.C376921ef9f9908,c=sklearn.linear_model.logistic.LogisticR egression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state36224
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C376921ef9f9a61(n9=sklearn.pipeline.C58a8364c3288c(n10=sklearn.pipeline.C376921ef9f88f7(n11=sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6),n13=fastsklearnfeature.transformations.OneDivisionTransformation.C376921ef9f8709),n14=sklearn.pipeline.C376921ef9f92b5(n15=sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052))),n17=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C376921ef9f9908,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C376921ef9f9a61(n9=sklearn.pipeline.C58a8364c3288c(n10=sklearn.pipeline.C376921ef9f88f7(n11=sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6),n13=fastsklearnfeature.transformations.OneDivisionTransformation.C376921ef9f8709),n14=sklearn.pipeline.C376921ef9f92b5(n15=sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052))),n17=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C376921ef9f9908,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n17", "step_name": "n17"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58a8364c3288c(n10=sklearn.pipeline.C376921ef9f88f7(n11=sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6),n13=fastsklearnfeature.transformations.OneDivisionTransformation.C376921ef9f8709),n14=sklearn.pipeline.C376921ef9f92b5(n15=sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052)))(1)_n_jobsnull
sklearn.pipeline.C58a8364c3288c(n10=sklearn.pipeline.C376921ef9f88f7(n11=sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6),n13=fastsklearnfeature.transformations.OneDivisionTransformation.C376921ef9f8709),n14=sklearn.pipeline.C376921ef9f92b5(n15=sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n14", "step_name": "n14"}}]
sklearn.pipeline.C58a8364c3288c(n10=sklearn.pipeline.C376921ef9f88f7(n11=sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6),n13=fastsklearnfeature.transformations.OneDivisionTransformation.C376921ef9f8709),n14=sklearn.pipeline.C376921ef9f92b5(n15=sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052)))(1)_transformer_weightsnull
sklearn.pipeline.C376921ef9f88f7(n11=sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6),n13=fastsklearnfeature.transformations.OneDivisionTransformation.C376921ef9f8709)(1)_memorynull
sklearn.pipeline.C376921ef9f88f7(n11=sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6),n13=fastsklearnfeature.transformations.OneDivisionTransformation.C376921ef9f8709)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}]
sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6)(1)_n_jobsnull
sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6)(1)_remainder"drop"
sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58a8364c326ca(n12=sklearn.preprocessing._function_transformer.C376921ef9f81c6)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C376921ef9f81c6(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376921ef9f81c6(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376921ef9f81c6(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376921ef9f81c6(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376921ef9f81c6(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376921ef9f81c6(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376921ef9f81c6(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376921ef9f81c6(1)_validatefalse
sklearn.pipeline.C376921ef9f92b5(n15=sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052))(1)_memorynull
sklearn.pipeline.C376921ef9f92b5(n15=sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n15", "step_name": "n15"}}]
sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052)(1)_n_jobsnull
sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052)(1)_remainder"drop"
sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376921ef9f914d(n16=sklearn.preprocessing._function_transformer.C376921ef9f9052)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n16", "step_name": "n16", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C376921ef9f9052(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376921ef9f9052(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376921ef9f9052(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376921ef9f9052(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376921ef9f9052(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376921ef9f9052(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376921ef9f9052(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376921ef9f9052(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C376921ef9f9908(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanprod"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C376921ef9f9908(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C376921ef9f9908(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7182 ± 0.0495
Per class
Cross-validation details (10-fold Crossvalidation)
0.6627 ± 0.0183
Per class
Cross-validation details (10-fold Crossvalidation)
0.0063 ± 0.0356
Cross-validation details (10-fold Crossvalidation)
-0.7062 ± 0.0184
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.6606 ± 0.1122
Per class
Cross-validation details (10-fold Crossvalidation)
0.7594 ± 0.0101
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.7594 ± 0.0101
Per class
Cross-validation details (10-fold Crossvalidation)
1.3772 ± 0.0087
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
1.1741 ± 0.0074
Cross-validation details (10-fold Crossvalidation)