Run
10228383

Run 10228383

Task 24 (Supervised Classification) mushroom Uploaded 04-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C58a8062f8e36d(n11=sklearn.pipeline.C376903ddb8d916(n12=sk learn.pipeline.C376903ddb8c27e(n13=sklearn.compose._column_transformer.C376 903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46 )),n15=sklearn.pipeline.C376903ddb8d29b(n16=sklearn.compose._column_transfo rmer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903 ddb8cc97))),n18=fastsklearnfeature.transformations.FastGroupByThenTransform ation.C376903ddb8dfde,c=sklearn.linear_model.logistic.LogisticRegression)(1 )Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state36733
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C58a8062f8e36d(n11=sklearn.pipeline.C376903ddb8d916(n12=sklearn.pipeline.C376903ddb8c27e(n13=sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46)),n15=sklearn.pipeline.C376903ddb8d29b(n16=sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97))),n18=fastsklearnfeature.transformations.FastGroupByThenTransformation.C376903ddb8dfde,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C58a8062f8e36d(n11=sklearn.pipeline.C376903ddb8d916(n12=sklearn.pipeline.C376903ddb8c27e(n13=sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46)),n15=sklearn.pipeline.C376903ddb8d29b(n16=sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97))),n18=fastsklearnfeature.transformations.FastGroupByThenTransformation.C376903ddb8dfde,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n18", "step_name": "n18"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C376903ddb8d916(n12=sklearn.pipeline.C376903ddb8c27e(n13=sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46)),n15=sklearn.pipeline.C376903ddb8d29b(n16=sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97)))(1)_n_jobsnull
sklearn.pipeline.C376903ddb8d916(n12=sklearn.pipeline.C376903ddb8c27e(n13=sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46)),n15=sklearn.pipeline.C376903ddb8d29b(n16=sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n15", "step_name": "n15"}}]
sklearn.pipeline.C376903ddb8d916(n12=sklearn.pipeline.C376903ddb8c27e(n13=sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46)),n15=sklearn.pipeline.C376903ddb8d29b(n16=sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97)))(1)_transformer_weightsnull
sklearn.pipeline.C376903ddb8c27e(n13=sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46))(1)_memorynull
sklearn.pipeline.C376903ddb8c27e(n13=sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}]
sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46)(1)_n_jobsnull
sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46)(1)_remainder"drop"
sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376903ddb8bf48(n14=sklearn.preprocessing._function_transformer.C376903ddb8bc46)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n14", "step_name": "n14", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C376903ddb8bc46(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376903ddb8bc46(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376903ddb8bc46(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376903ddb8bc46(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376903ddb8bc46(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376903ddb8bc46(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376903ddb8bc46(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376903ddb8bc46(1)_validatefalse
sklearn.pipeline.C376903ddb8d29b(n16=sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97))(1)_memorynull
sklearn.pipeline.C376903ddb8d29b(n16=sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n16", "step_name": "n16"}}]
sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97)(1)_n_jobsnull
sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97)(1)_remainder"drop"
sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58a8062f8e17d(n17=sklearn.preprocessing._function_transformer.C376903ddb8cc97)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n17", "step_name": "n17", "argument_1": [4]}}]
sklearn.preprocessing._function_transformer.C376903ddb8cc97(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376903ddb8cc97(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376903ddb8cc97(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376903ddb8cc97(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376903ddb8cc97(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376903ddb8cc97(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376903ddb8cc97(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376903ddb8cc97(1)_validatefalse
fastsklearnfeature.transformations.FastGroupByThenTransformation.C376903ddb8dfde(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanmin"}
fastsklearnfeature.transformations.FastGroupByThenTransformation.C376903ddb8dfde(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9817 ± 0.0059
Per class
Cross-validation details (10-fold Crossvalidation)
0.9852 ± 0.0057
Per class
Cross-validation details (10-fold Crossvalidation)
0.9704 ± 0.0115
Cross-validation details (10-fold Crossvalidation)
0.656 ± 0.0071
Cross-validation details (10-fold Crossvalidation)
0.2093 ± 0.0031
Cross-validation details (10-fold Crossvalidation)
0.4994 ± 0
Cross-validation details (10-fold Crossvalidation)
8124
Per class
Cross-validation details (10-fold Crossvalidation)
0.9856 ± 0.0054
Per class
Cross-validation details (10-fold Crossvalidation)
0.9852 ± 0.0057
Cross-validation details (10-fold Crossvalidation)
0.9991 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9852 ± 0.0057
Per class
Cross-validation details (10-fold Crossvalidation)
0.4191 ± 0.0062
Cross-validation details (10-fold Crossvalidation)
0.4997 ± 0
Cross-validation details (10-fold Crossvalidation)
0.2232 ± 0.0071
Cross-validation details (10-fold Crossvalidation)
0.4467 ± 0.0142
Cross-validation details (10-fold Crossvalidation)