Run
10228375

Run 10228375

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 04-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3768b867c37357(n9=sklearn.pipeline.C3768b867c36a79(n10=sk learn.pipeline.C3768b867c35aca(n11=sklearn.compose._column_transformer.C376 8b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216) ),n13=sklearn.pipeline.C3768b867c3673d(n14=sklearn.compose._column_transfor mer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b8 67c363d7))),n16=fastsklearnfeature.transformations.HigherOrderCommutativeTr ansformation.C3768b867c36eef,n17=fastsklearnfeature.transformations.OneDivi sionTransformation.C3768b867c37181,c=sklearn.linear_model.logistic.Logistic Regression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state5131
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3768b867c37357(n9=sklearn.pipeline.C3768b867c36a79(n10=sklearn.pipeline.C3768b867c35aca(n11=sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216)),n13=sklearn.pipeline.C3768b867c3673d(n14=sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7))),n16=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3768b867c36eef,n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3768b867c37181,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3768b867c37357(n9=sklearn.pipeline.C3768b867c36a79(n10=sklearn.pipeline.C3768b867c35aca(n11=sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216)),n13=sklearn.pipeline.C3768b867c3673d(n14=sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7))),n16=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3768b867c36eef,n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3768b867c37181,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n16", "step_name": "n16"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n17", "step_name": "n17"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3768b867c36a79(n10=sklearn.pipeline.C3768b867c35aca(n11=sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216)),n13=sklearn.pipeline.C3768b867c3673d(n14=sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7)))(1)_n_jobsnull
sklearn.pipeline.C3768b867c36a79(n10=sklearn.pipeline.C3768b867c35aca(n11=sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216)),n13=sklearn.pipeline.C3768b867c3673d(n14=sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}]
sklearn.pipeline.C3768b867c36a79(n10=sklearn.pipeline.C3768b867c35aca(n11=sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216)),n13=sklearn.pipeline.C3768b867c3673d(n14=sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7)))(1)_transformer_weightsnull
sklearn.pipeline.C3768b867c35aca(n11=sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216))(1)_memorynull
sklearn.pipeline.C3768b867c35aca(n11=sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}]
sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216)(1)_n_jobsnull
sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216)(1)_remainder"drop"
sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3768b867c3575f(n12=sklearn.preprocessing._function_transformer.C58a78d72d2216)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C58a78d72d2216(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58a78d72d2216(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58a78d72d2216(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58a78d72d2216(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58a78d72d2216(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58a78d72d2216(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58a78d72d2216(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58a78d72d2216(1)_validatefalse
sklearn.pipeline.C3768b867c3673d(n14=sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7))(1)_memorynull
sklearn.pipeline.C3768b867c3673d(n14=sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n14", "step_name": "n14"}}]
sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7)(1)_n_jobsnull
sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7)(1)_remainder"drop"
sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3768b867c36565(n15=sklearn.preprocessing._function_transformer.C3768b867c363d7)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n15", "step_name": "n15", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C3768b867c363d7(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3768b867c363d7(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3768b867c363d7(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3768b867c363d7(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3768b867c363d7(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3768b867c363d7(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3768b867c363d7(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3768b867c363d7(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3768b867c36eef(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nansum"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3768b867c36eef(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3768b867c36eef(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5009 ± 0.0479
Per class
Cross-validation details (10-fold Crossvalidation)
0.6687 ± 0.2014
Per class
Cross-validation details (10-fold Crossvalidation)
0.0227 ± 0.0634
Cross-validation details (10-fold Crossvalidation)
-0.7063 ± 0.0184
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.6473 ± 0.1061
Per class
Cross-validation details (10-fold Crossvalidation)
0.7086 ± 0.1564
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.7086 ± 0.1564
Per class
Cross-validation details (10-fold Crossvalidation)
1.3772 ± 0.0087
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
1.1741 ± 0.0074
Cross-validation details (10-fold Crossvalidation)