Run
10228338

Run 10228338

Task 2079 (Supervised Classification) eucalyptus Uploaded 02-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.20.3. Test
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C58a5cba134322(n1=sklearn.pipeline.C37679f44c099a3(n2=skle arn.pipeline.C37679f44c090a7(n3=sklearn.compose._column_transformer.C37679f 44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e),n5 =fastsklearnfeature.transformations.PandasDiscretizerTransformation.C37679f 44c08f90),n6=sklearn.pipeline.C37679f44c09759(n7=sklearn.compose._column_tr ansformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C5 8a5cba134208),n9=fastsklearnfeature.transformations.ImputationTransformatio n.C37679f44c0966f)),n10=fastsklearnfeature.transformations.IdentityTransfor mation.C58a5cba13430d,c=sklearn.linear_model.logistic.LogisticRegression)(1 )Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C1.0
sklearn.linear_model.logistic.LogisticRegression(23)_class_weightnull
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter100
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"warn"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state40082
sklearn.linear_model.logistic.LogisticRegression(23)_solver"warn"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C58a5cba134322(n1=sklearn.pipeline.C37679f44c099a3(n2=sklearn.pipeline.C37679f44c090a7(n3=sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C37679f44c08f90),n6=sklearn.pipeline.C37679f44c09759(n7=sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208),n9=fastsklearnfeature.transformations.ImputationTransformation.C37679f44c0966f)),n10=fastsklearnfeature.transformations.IdentityTransformation.C58a5cba13430d,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C58a5cba134322(n1=sklearn.pipeline.C37679f44c099a3(n2=sklearn.pipeline.C37679f44c090a7(n3=sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C37679f44c08f90),n6=sklearn.pipeline.C37679f44c09759(n7=sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208),n9=fastsklearnfeature.transformations.ImputationTransformation.C37679f44c0966f)),n10=fastsklearnfeature.transformations.IdentityTransformation.C58a5cba13430d,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n1", "step_name": "n1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C37679f44c099a3(n2=sklearn.pipeline.C37679f44c090a7(n3=sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C37679f44c08f90),n6=sklearn.pipeline.C37679f44c09759(n7=sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208),n9=fastsklearnfeature.transformations.ImputationTransformation.C37679f44c0966f))(1)_n_jobsnull
sklearn.pipeline.C37679f44c099a3(n2=sklearn.pipeline.C37679f44c090a7(n3=sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C37679f44c08f90),n6=sklearn.pipeline.C37679f44c09759(n7=sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208),n9=fastsklearnfeature.transformations.ImputationTransformation.C37679f44c0966f))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n2", "step_name": "n2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6"}}]
sklearn.pipeline.C37679f44c099a3(n2=sklearn.pipeline.C37679f44c090a7(n3=sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C37679f44c08f90),n6=sklearn.pipeline.C37679f44c09759(n7=sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208),n9=fastsklearnfeature.transformations.ImputationTransformation.C37679f44c0966f))(1)_transformer_weightsnull
sklearn.pipeline.C37679f44c090a7(n3=sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C37679f44c08f90)(1)_memorynull
sklearn.pipeline.C37679f44c090a7(n3=sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C37679f44c08f90)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n3", "step_name": "n3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n5", "step_name": "n5"}}]
sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e)(1)_n_jobsnull
sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e)(1)_remainder"drop"
sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37679f44c08dae(n4=sklearn.preprocessing._function_transformer.C37679f44c08c2e)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n4", "step_name": "n4", "argument_1": [14]}}]
sklearn.preprocessing._function_transformer.C37679f44c08c2e(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37679f44c08c2e(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37679f44c08c2e(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37679f44c08c2e(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37679f44c08c2e(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37679f44c08c2e(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37679f44c08c2e(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37679f44c08c2e(1)_validatefalse
fastsklearnfeature.transformations.PandasDiscretizerTransformation.C37679f44c08f90(1)_number_bins10
fastsklearnfeature.transformations.PandasDiscretizerTransformation.C37679f44c08f90(1)_qbucketfalse
sklearn.pipeline.C37679f44c09759(n7=sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208),n9=fastsklearnfeature.transformations.ImputationTransformation.C37679f44c0966f)(1)_memorynull
sklearn.pipeline.C37679f44c09759(n7=sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208),n9=fastsklearnfeature.transformations.ImputationTransformation.C37679f44c0966f)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9"}}]
sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208)(1)_n_jobsnull
sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208)(1)_remainder"drop"
sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37679f44c0951d(n8=sklearn.preprocessing._function_transformer.C58a5cba134208)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8", "argument_1": [17]}}]
sklearn.preprocessing._function_transformer.C58a5cba134208(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58a5cba134208(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58a5cba134208(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58a5cba134208(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58a5cba134208(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58a5cba134208(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58a5cba134208(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58a5cba134208(1)_validatefalse
fastsklearnfeature.transformations.ImputationTransformation.C37679f44c0966f(1)_strategy"mean"
fastsklearnfeature.transformations.IdentityTransformation.C58a5cba13430d(1)_number_parent_features2

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.8539 ± 0.0204
Per class
Cross-validation details (10-fold Crossvalidation)
0.3139 ± 0.0283
Cross-validation details (10-fold Crossvalidation)
226.0711 ± 1.057
Cross-validation details (10-fold Crossvalidation)
0.2519 ± 0.004
Cross-validation details (10-fold Crossvalidation)
0.3132 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
736
Per class
Cross-validation details (10-fold Crossvalidation)
0.5027 ± 0.02
Cross-validation details (10-fold Crossvalidation)
2.2629
Cross-validation details (10-fold Crossvalidation)
0.5027 ± 0.02
Per class
Cross-validation details (10-fold Crossvalidation)
0.8041 ± 0.0129
Cross-validation details (10-fold Crossvalidation)
0.3957 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.3414 ± 0.0045
Cross-validation details (10-fold Crossvalidation)
0.8626 ± 0.0115
Cross-validation details (10-fold Crossvalidation)