Run
10228336

Run 10228336

Task 3954 (Supervised Classification) MagicTelescope Uploaded 02-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C58a5829714fa0(n3=sklearn.pipeline.C3767719e6d16a5(n4=skle arn.pipeline.C3767719e6d0937(n5=sklearn.compose._column_transformer.C58a582 9714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a)),n7 =sklearn.pipeline.C3767719e6d13a0(n8=sklearn.compose._column_transformer.C3 767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80 ))),n10=fastsklearnfeature.transformations.IdentityTransformation.C3767719e 6d1ad1,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state26793
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C58a5829714fa0(n3=sklearn.pipeline.C3767719e6d16a5(n4=sklearn.pipeline.C3767719e6d0937(n5=sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a)),n7=sklearn.pipeline.C3767719e6d13a0(n8=sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80))),n10=fastsklearnfeature.transformations.IdentityTransformation.C3767719e6d1ad1,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C58a5829714fa0(n3=sklearn.pipeline.C3767719e6d16a5(n4=sklearn.pipeline.C3767719e6d0937(n5=sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a)),n7=sklearn.pipeline.C3767719e6d13a0(n8=sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80))),n10=fastsklearnfeature.transformations.IdentityTransformation.C3767719e6d1ad1,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n3", "step_name": "n3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3767719e6d16a5(n4=sklearn.pipeline.C3767719e6d0937(n5=sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a)),n7=sklearn.pipeline.C3767719e6d13a0(n8=sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80)))(1)_n_jobsnull
sklearn.pipeline.C3767719e6d16a5(n4=sklearn.pipeline.C3767719e6d0937(n5=sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a)),n7=sklearn.pipeline.C3767719e6d13a0(n8=sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n4", "step_name": "n4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}]
sklearn.pipeline.C3767719e6d16a5(n4=sklearn.pipeline.C3767719e6d0937(n5=sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a)),n7=sklearn.pipeline.C3767719e6d13a0(n8=sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80)))(1)_transformer_weightsnull
sklearn.pipeline.C3767719e6d0937(n5=sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a))(1)_memorynull
sklearn.pipeline.C3767719e6d0937(n5=sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n5", "step_name": "n5"}}]
sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a)(1)_n_jobsnull
sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a)(1)_remainder"drop"
sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58a5829714d78(n6=sklearn.preprocessing._function_transformer.C3767719e6d045a)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3767719e6d045a(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3767719e6d045a(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3767719e6d045a(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3767719e6d045a(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3767719e6d045a(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3767719e6d045a(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3767719e6d045a(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3767719e6d045a(1)_validatefalse
sklearn.pipeline.C3767719e6d13a0(n8=sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80))(1)_memorynull
sklearn.pipeline.C3767719e6d13a0(n8=sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8"}}]
sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80)(1)_n_jobsnull
sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80)(1)_remainder"drop"
sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3767719e6d1234(n9=sklearn.preprocessing._function_transformer.C58a5829714e80)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9", "argument_1": [8]}}]
sklearn.preprocessing._function_transformer.C58a5829714e80(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58a5829714e80(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58a5829714e80(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58a5829714e80(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58a5829714e80(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58a5829714e80(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58a5829714e80(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58a5829714e80(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C3767719e6d1ad1(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.8188 ± 0.0129
Per class
Cross-validation details (10-fold Crossvalidation)
0.7891 ± 0.0073
Per class
Cross-validation details (10-fold Crossvalidation)
0.5382 ± 0.0161
Cross-validation details (10-fold Crossvalidation)
5306.2342 ± 22.4881
Cross-validation details (10-fold Crossvalidation)
0.3394 ± 0.0046
Cross-validation details (10-fold Crossvalidation)
0.456 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
19020
Per class
Cross-validation details (10-fold Crossvalidation)
0.7895 ± 0.0075
Per class
Cross-validation details (10-fold Crossvalidation)
0.7887 ± 0.0074
Cross-validation details (10-fold Crossvalidation)
0.9355
Cross-validation details (10-fold Crossvalidation)
0.7887 ± 0.0074
Per class
Cross-validation details (10-fold Crossvalidation)
0.7444 ± 0.01
Cross-validation details (10-fold Crossvalidation)
0.4775 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4049 ± 0.006
Cross-validation details (10-fold Crossvalidation)
0.8481 ± 0.0126
Cross-validation details (10-fold Crossvalidation)