Run
10228312

Run 10228312

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766ba67c576ba(n18=sklearn.pipeline.C3766ba67c5714c(n19=s klearn.pipeline.C3766ba67c55d0b(n20=sklearn.compose._column_transformer.C58 a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6) ,n22=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3766ba 67c5597e),n23=sklearn.pipeline.C3766ba67c56d68(n24=sklearn.compose._column_ transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer .C58a45d72d5740),n26=fastsklearnfeature.transformations.OneDivisionTransfor mation.C58a45d72d579a)),n27=fastsklearnfeature.transformations.HigherOrderC ommutativeTransformation.C3766ba67c57555,c=sklearn.linear_model.logistic.Lo gisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.01
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state31484
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766ba67c576ba(n18=sklearn.pipeline.C3766ba67c5714c(n19=sklearn.pipeline.C3766ba67c55d0b(n20=sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6),n22=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3766ba67c5597e),n23=sklearn.pipeline.C3766ba67c56d68(n24=sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740),n26=fastsklearnfeature.transformations.OneDivisionTransformation.C58a45d72d579a)),n27=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766ba67c57555,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766ba67c576ba(n18=sklearn.pipeline.C3766ba67c5714c(n19=sklearn.pipeline.C3766ba67c55d0b(n20=sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6),n22=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3766ba67c5597e),n23=sklearn.pipeline.C3766ba67c56d68(n24=sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740),n26=fastsklearnfeature.transformations.OneDivisionTransformation.C58a45d72d579a)),n27=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766ba67c57555,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n18", "step_name": "n18"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n27", "step_name": "n27"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3766ba67c5714c(n19=sklearn.pipeline.C3766ba67c55d0b(n20=sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6),n22=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3766ba67c5597e),n23=sklearn.pipeline.C3766ba67c56d68(n24=sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740),n26=fastsklearnfeature.transformations.OneDivisionTransformation.C58a45d72d579a))(1)_n_jobsnull
sklearn.pipeline.C3766ba67c5714c(n19=sklearn.pipeline.C3766ba67c55d0b(n20=sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6),n22=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3766ba67c5597e),n23=sklearn.pipeline.C3766ba67c56d68(n24=sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740),n26=fastsklearnfeature.transformations.OneDivisionTransformation.C58a45d72d579a))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n19", "step_name": "n19"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n23", "step_name": "n23"}}]
sklearn.pipeline.C3766ba67c5714c(n19=sklearn.pipeline.C3766ba67c55d0b(n20=sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6),n22=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3766ba67c5597e),n23=sklearn.pipeline.C3766ba67c56d68(n24=sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740),n26=fastsklearnfeature.transformations.OneDivisionTransformation.C58a45d72d579a))(1)_transformer_weightsnull
sklearn.pipeline.C3766ba67c55d0b(n20=sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6),n22=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3766ba67c5597e)(1)_memorynull
sklearn.pipeline.C3766ba67c55d0b(n20=sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6),n22=fastsklearnfeature.transformations.MinMaxScalingTransformation.C3766ba67c5597e)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n20", "step_name": "n20"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n22", "step_name": "n22"}}]
sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6)(1)_n_jobsnull
sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6)(1)_remainder"drop"
sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58a45d72d553b(n21=sklearn.preprocessing._function_transformer.C58a45d72d54e6)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n21", "step_name": "n21", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C58a45d72d54e6(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58a45d72d54e6(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58a45d72d54e6(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58a45d72d54e6(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58a45d72d54e6(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58a45d72d54e6(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58a45d72d54e6(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58a45d72d54e6(1)_validatefalse
sklearn.pipeline.C3766ba67c56d68(n24=sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740),n26=fastsklearnfeature.transformations.OneDivisionTransformation.C58a45d72d579a)(1)_memorynull
sklearn.pipeline.C3766ba67c56d68(n24=sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740),n26=fastsklearnfeature.transformations.OneDivisionTransformation.C58a45d72d579a)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n24", "step_name": "n24"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n26", "step_name": "n26"}}]
sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766ba67c569db(n25=sklearn.preprocessing._function_transformer.C58a45d72d5740)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n25", "step_name": "n25", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C58a45d72d5740(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58a45d72d5740(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58a45d72d5740(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58a45d72d5740(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58a45d72d5740(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58a45d72d5740(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58a45d72d5740(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58a45d72d5740(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766ba67c57555(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanprod"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766ba67c57555(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766ba67c57555(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7142 ± 0.0591
Per class
Cross-validation details (10-fold Crossvalidation)
0.7504 ± 0.052
Per class
Cross-validation details (10-fold Crossvalidation)
0.2727 ± 0.1477
Cross-validation details (10-fold Crossvalidation)
-527.5291 ± 0.5674
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.7456 ± 0.0615
Per class
Cross-validation details (10-fold Crossvalidation)
0.7714 ± 0.05
Cross-validation details (10-fold Crossvalidation)
0.7928
Cross-validation details (10-fold Crossvalidation)
0.7714 ± 0.05
Per class
Cross-validation details (10-fold Crossvalidation)
1.3772 ± 0.0087
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
1.1741 ± 0.0074
Cross-validation details (10-fold Crossvalidation)