Run
10228311

Run 10228311

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766b9dae6930c(n9=sklearn.pipeline.C3766b9dae682d5(n10=sk learn.pipeline.C3766b9dae66516(n11=sklearn.compose._column_transformer.C58a 45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19) ),n13=sklearn.pipeline.C3766b9dae67a04(n14=sklearn.compose._column_transfor mer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9 dae673a5))),n16=fastsklearnfeature.transformations.HigherOrderCommutativeTr ansformation.C3766b9dae68d4d,n17=fastsklearnfeature.transformations.OneDivi sionTransformation.C3766b9dae690cb,c=sklearn.linear_model.logistic.Logistic Regression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state6577
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766b9dae6930c(n9=sklearn.pipeline.C3766b9dae682d5(n10=sklearn.pipeline.C3766b9dae66516(n11=sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19)),n13=sklearn.pipeline.C3766b9dae67a04(n14=sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5))),n16=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b9dae68d4d,n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b9dae690cb,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766b9dae6930c(n9=sklearn.pipeline.C3766b9dae682d5(n10=sklearn.pipeline.C3766b9dae66516(n11=sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19)),n13=sklearn.pipeline.C3766b9dae67a04(n14=sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5))),n16=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b9dae68d4d,n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b9dae690cb,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n16", "step_name": "n16"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n17", "step_name": "n17"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3766b9dae682d5(n10=sklearn.pipeline.C3766b9dae66516(n11=sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19)),n13=sklearn.pipeline.C3766b9dae67a04(n14=sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5)))(1)_n_jobsnull
sklearn.pipeline.C3766b9dae682d5(n10=sklearn.pipeline.C3766b9dae66516(n11=sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19)),n13=sklearn.pipeline.C3766b9dae67a04(n14=sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}]
sklearn.pipeline.C3766b9dae682d5(n10=sklearn.pipeline.C3766b9dae66516(n11=sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19)),n13=sklearn.pipeline.C3766b9dae67a04(n14=sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5)))(1)_transformer_weightsnull
sklearn.pipeline.C3766b9dae66516(n11=sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19))(1)_memorynull
sklearn.pipeline.C3766b9dae66516(n11=sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}]
sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19)(1)_n_jobsnull
sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19)(1)_remainder"drop"
sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58a45c91709ad(n12=sklearn.preprocessing._function_transformer.C3766b9dae65d19)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C3766b9dae65d19(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b9dae65d19(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b9dae65d19(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b9dae65d19(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b9dae65d19(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b9dae65d19(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b9dae65d19(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b9dae65d19(1)_validatefalse
sklearn.pipeline.C3766b9dae67a04(n14=sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5))(1)_memorynull
sklearn.pipeline.C3766b9dae67a04(n14=sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n14", "step_name": "n14"}}]
sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b9dae6764c(n15=sklearn.preprocessing._function_transformer.C3766b9dae673a5)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n15", "step_name": "n15", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C3766b9dae673a5(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b9dae673a5(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b9dae673a5(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b9dae673a5(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b9dae673a5(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b9dae673a5(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b9dae673a5(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b9dae673a5(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b9dae68d4d(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nansum"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b9dae68d4d(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b9dae68d4d(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5009 ± 0.0479
Per class
Cross-validation details (10-fold Crossvalidation)
0.6687 ± 0.2014
Per class
Cross-validation details (10-fold Crossvalidation)
0.0227 ± 0.0634
Cross-validation details (10-fold Crossvalidation)
-527.5276 ± 0.5674
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.6473 ± 0.1061
Per class
Cross-validation details (10-fold Crossvalidation)
0.7086 ± 0.1564
Cross-validation details (10-fold Crossvalidation)
0.7928
Cross-validation details (10-fold Crossvalidation)
0.7086 ± 0.1564
Per class
Cross-validation details (10-fold Crossvalidation)
1.3772 ± 0.0087
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0
Cross-validation details (10-fold Crossvalidation)
1.1741 ± 0.0074
Cross-validation details (10-fold Crossvalidation)