Run
10228307

Run 10228307

Task 3638 (Supervised Classification) quake Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766b8c6c297e6(n13=sklearn.pipeline.C3766b8c6c29254(n14=s klearn.pipeline.C3766b8c6c28802(n15=sklearn.compose._column_transformer.C58 a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241 ),n17=fastsklearnfeature.transformations.MinusTransformation.C3766b8c6c2866 8),n18=sklearn.pipeline.C3766b8c6c28fa1(n19=sklearn.compose._column_transfo rmer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b 8c6c28d64))),n21=fastsklearnfeature.transformations.FastGroupByThenTransfor mation.C3766b8c6c2968a,c=sklearn.linear_model.logistic.LogisticRegression)( 1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state24050
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766b8c6c297e6(n13=sklearn.pipeline.C3766b8c6c29254(n14=sklearn.pipeline.C3766b8c6c28802(n15=sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241),n17=fastsklearnfeature.transformations.MinusTransformation.C3766b8c6c28668),n18=sklearn.pipeline.C3766b8c6c28fa1(n19=sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64))),n21=fastsklearnfeature.transformations.FastGroupByThenTransformation.C3766b8c6c2968a,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766b8c6c297e6(n13=sklearn.pipeline.C3766b8c6c29254(n14=sklearn.pipeline.C3766b8c6c28802(n15=sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241),n17=fastsklearnfeature.transformations.MinusTransformation.C3766b8c6c28668),n18=sklearn.pipeline.C3766b8c6c28fa1(n19=sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64))),n21=fastsklearnfeature.transformations.FastGroupByThenTransformation.C3766b8c6c2968a,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n21", "step_name": "n21"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3766b8c6c29254(n14=sklearn.pipeline.C3766b8c6c28802(n15=sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241),n17=fastsklearnfeature.transformations.MinusTransformation.C3766b8c6c28668),n18=sklearn.pipeline.C3766b8c6c28fa1(n19=sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64)))(1)_n_jobsnull
sklearn.pipeline.C3766b8c6c29254(n14=sklearn.pipeline.C3766b8c6c28802(n15=sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241),n17=fastsklearnfeature.transformations.MinusTransformation.C3766b8c6c28668),n18=sklearn.pipeline.C3766b8c6c28fa1(n19=sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n14", "step_name": "n14"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n18", "step_name": "n18"}}]
sklearn.pipeline.C3766b8c6c29254(n14=sklearn.pipeline.C3766b8c6c28802(n15=sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241),n17=fastsklearnfeature.transformations.MinusTransformation.C3766b8c6c28668),n18=sklearn.pipeline.C3766b8c6c28fa1(n19=sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64)))(1)_transformer_weightsnull
sklearn.pipeline.C3766b8c6c28802(n15=sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241),n17=fastsklearnfeature.transformations.MinusTransformation.C3766b8c6c28668)(1)_memorynull
sklearn.pipeline.C3766b8c6c28802(n15=sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241),n17=fastsklearnfeature.transformations.MinusTransformation.C3766b8c6c28668)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n15", "step_name": "n15"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n17", "step_name": "n17"}}]
sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241)(1)_n_jobsnull
sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241)(1)_remainder"drop"
sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58a45ad79da00(n16=sklearn.preprocessing._function_transformer.C3766b8c6c28241)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n16", "step_name": "n16", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3766b8c6c28241(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b8c6c28241(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b8c6c28241(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b8c6c28241(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b8c6c28241(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b8c6c28241(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b8c6c28241(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b8c6c28241(1)_validatefalse
sklearn.pipeline.C3766b8c6c28fa1(n19=sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64))(1)_memorynull
sklearn.pipeline.C3766b8c6c28fa1(n19=sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n19", "step_name": "n19"}}]
sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b8c6c28e53(n20=sklearn.preprocessing._function_transformer.C3766b8c6c28d64)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n20", "step_name": "n20", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3766b8c6c28d64(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b8c6c28d64(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b8c6c28d64(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b8c6c28d64(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b8c6c28d64(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b8c6c28d64(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b8c6c28d64(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b8c6c28d64(1)_validatefalse
fastsklearnfeature.transformations.FastGroupByThenTransformation.C3766b8c6c2968a(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanstd"}
fastsklearnfeature.transformations.FastGroupByThenTransformation.C3766b8c6c2968a(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.5
Per class
Cross-validation details (10-fold Crossvalidation)
-40.7421 ± 0.08
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
2178
Per class
Cross-validation details (10-fold Crossvalidation)
0.5551 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.9912
Cross-validation details (10-fold Crossvalidation)
0.5551 ± 0.0011
Per class
Cross-validation details (10-fold Crossvalidation)
1.0123 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.497 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
1.0061 ± 0.0002
Cross-validation details (10-fold Crossvalidation)