Run
10228306

Run 10228306

Task 3638 (Supervised Classification) quake Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766b8b09b72ef(n5=sklearn.pipeline.C3766b8b09b6c80(n6=skl earn.pipeline.C3766b8b09b5f3c(n7=sklearn.compose._column_transformer.C3766b 8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b)), n9=sklearn.pipeline.C3766b8b09b6968(n10=sklearn.compose._column_transformer .C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09 b6664))),n12=fastsklearnfeature.transformations.HigherOrderCommutativeTrans formation.C3766b8b09b7142,c=sklearn.linear_model.logistic.LogisticRegressio n)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state15771
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766b8b09b72ef(n5=sklearn.pipeline.C3766b8b09b6c80(n6=sklearn.pipeline.C3766b8b09b5f3c(n7=sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b)),n9=sklearn.pipeline.C3766b8b09b6968(n10=sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664))),n12=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b8b09b7142,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766b8b09b72ef(n5=sklearn.pipeline.C3766b8b09b6c80(n6=sklearn.pipeline.C3766b8b09b5f3c(n7=sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b)),n9=sklearn.pipeline.C3766b8b09b6968(n10=sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664))),n12=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b8b09b7142,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n5", "step_name": "n5"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3766b8b09b6c80(n6=sklearn.pipeline.C3766b8b09b5f3c(n7=sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b)),n9=sklearn.pipeline.C3766b8b09b6968(n10=sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664)))(1)_n_jobsnull
sklearn.pipeline.C3766b8b09b6c80(n6=sklearn.pipeline.C3766b8b09b5f3c(n7=sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b)),n9=sklearn.pipeline.C3766b8b09b6968(n10=sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9"}}]
sklearn.pipeline.C3766b8b09b6c80(n6=sklearn.pipeline.C3766b8b09b5f3c(n7=sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b)),n9=sklearn.pipeline.C3766b8b09b6968(n10=sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664)))(1)_transformer_weightsnull
sklearn.pipeline.C3766b8b09b5f3c(n7=sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b))(1)_memorynull
sklearn.pipeline.C3766b8b09b5f3c(n7=sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}]
sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b8b09b5c84(n8=sklearn.preprocessing._function_transformer.C3766b8b09b5a2b)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C3766b8b09b5a2b(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b8b09b5a2b(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b8b09b5a2b(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b8b09b5a2b(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b8b09b5a2b(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b8b09b5a2b(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b8b09b5a2b(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b8b09b5a2b(1)_validatefalse
sklearn.pipeline.C3766b8b09b6968(n10=sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664))(1)_memorynull
sklearn.pipeline.C3766b8b09b6968(n10=sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}]
sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b8b09b67c2(n11=sklearn.preprocessing._function_transformer.C3766b8b09b6664)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C3766b8b09b6664(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b8b09b6664(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b8b09b6664(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b8b09b6664(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b8b09b6664(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b8b09b6664(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b8b09b6664(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b8b09b6664(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b8b09b7142(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanprod"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b8b09b7142(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b8b09b7142(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.4866 ± 0.0211
Per class
Cross-validation details (10-fold Crossvalidation)
0.503
Per class
-0.0001
-40.4108 ± 0.1112
Cross-validation details (10-fold Crossvalidation)
0.4999 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
2178
Per class
Cross-validation details (10-fold Crossvalidation)
0.506
Per class
0.522 ± 0.0533
Cross-validation details (10-fold Crossvalidation)
0.9912
Cross-validation details (10-fold Crossvalidation)
0.522 ± 0.0533
Per class
Cross-validation details (10-fold Crossvalidation)
1.0122 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.497 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.5 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
1.006 ± 0.0004
Cross-validation details (10-fold Crossvalidation)