Run
10228301

Run 10228301

Task 3876 (Supervised Classification) analcatdata_challenger Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766b6f86d90b6(n23=sklearn.pipeline.C3766b6f86d8bde(n24=s klearn.pipeline.C3766b6f86d7f31(n25=sklearn.compose._column_transformer.C37 66b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762 b),n27=fastsklearnfeature.transformations.OneHotTransformation.C3766b6f86d7 c49),n28=sklearn.pipeline.C3766b6f86d8932(n29=sklearn.compose._column_trans former.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C376 6b6f86d8694))),n31=fastsklearnfeature.transformations.HigherOrderCommutativ eTransformation.C3766b6f86d8f7b,c=sklearn.linear_model.logistic.LogisticReg ression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state38793
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766b6f86d90b6(n23=sklearn.pipeline.C3766b6f86d8bde(n24=sklearn.pipeline.C3766b6f86d7f31(n25=sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b),n27=fastsklearnfeature.transformations.OneHotTransformation.C3766b6f86d7c49),n28=sklearn.pipeline.C3766b6f86d8932(n29=sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694))),n31=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b6f86d8f7b,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766b6f86d90b6(n23=sklearn.pipeline.C3766b6f86d8bde(n24=sklearn.pipeline.C3766b6f86d7f31(n25=sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b),n27=fastsklearnfeature.transformations.OneHotTransformation.C3766b6f86d7c49),n28=sklearn.pipeline.C3766b6f86d8932(n29=sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694))),n31=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b6f86d8f7b,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n23", "step_name": "n23"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n31", "step_name": "n31"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3766b6f86d8bde(n24=sklearn.pipeline.C3766b6f86d7f31(n25=sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b),n27=fastsklearnfeature.transformations.OneHotTransformation.C3766b6f86d7c49),n28=sklearn.pipeline.C3766b6f86d8932(n29=sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694)))(1)_n_jobsnull
sklearn.pipeline.C3766b6f86d8bde(n24=sklearn.pipeline.C3766b6f86d7f31(n25=sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b),n27=fastsklearnfeature.transformations.OneHotTransformation.C3766b6f86d7c49),n28=sklearn.pipeline.C3766b6f86d8932(n29=sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n24", "step_name": "n24"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n28", "step_name": "n28"}}]
sklearn.pipeline.C3766b6f86d8bde(n24=sklearn.pipeline.C3766b6f86d7f31(n25=sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b),n27=fastsklearnfeature.transformations.OneHotTransformation.C3766b6f86d7c49),n28=sklearn.pipeline.C3766b6f86d8932(n29=sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694)))(1)_transformer_weightsnull
sklearn.pipeline.C3766b6f86d7f31(n25=sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b),n27=fastsklearnfeature.transformations.OneHotTransformation.C3766b6f86d7c49)(1)_memorynull
sklearn.pipeline.C3766b6f86d7f31(n25=sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b),n27=fastsklearnfeature.transformations.OneHotTransformation.C3766b6f86d7c49)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n25", "step_name": "n25"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n27", "step_name": "n27"}}]
sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b6f86d7921(n26=sklearn.preprocessing._function_transformer.C3766b6f86d762b)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n26", "step_name": "n26", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C3766b6f86d762b(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b6f86d762b(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b6f86d762b(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b6f86d762b(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b6f86d762b(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b6f86d762b(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b6f86d762b(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b6f86d762b(1)_validatefalse
fastsklearnfeature.transformations.OneHotTransformation.C3766b6f86d7c49(1)_raw_feature0
fastsklearnfeature.transformations.OneHotTransformation.C3766b6f86d7c49(1)_value0.0
fastsklearnfeature.transformations.OneHotTransformation.C3766b6f86d7c49(1)_value_id0
sklearn.pipeline.C3766b6f86d8932(n29=sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694))(1)_memorynull
sklearn.pipeline.C3766b6f86d8932(n29=sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n29", "step_name": "n29"}}]
sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b6f86d87be(n30=sklearn.preprocessing._function_transformer.C3766b6f86d8694)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n30", "step_name": "n30", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C3766b6f86d8694(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b6f86d8694(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b6f86d8694(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b6f86d8694(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b6f86d8694(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b6f86d8694(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b6f86d8694(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b6f86d8694(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b6f86d8f7b(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanprod"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b6f86d8f7b(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b6f86d8f7b(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.5
Per class
Cross-validation details (10-fold Crossvalidation)
± 0.3162
Cross-validation details (10-fold Crossvalidation)
-907.4711 ± 3.5649
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
0.1273 ± 0.0196
Cross-validation details (10-fold Crossvalidation)
138
Per class
Cross-validation details (10-fold Crossvalidation)
0.9348 ± 0.0228
Cross-validation details (10-fold Crossvalidation)
0.3712
Cross-validation details (10-fold Crossvalidation)
0.9348 ± 0.0228
Per class
Cross-validation details (10-fold Crossvalidation)
3.9268 ± 1.027
Cross-validation details (10-fold Crossvalidation)
0.247 ± 0.0592
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)
2.0244 ± 1.6021
Cross-validation details (10-fold Crossvalidation)