Run
10228299

Run 10228299

Task 3876 (Supervised Classification) analcatdata_challenger Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766b6d26986f6(n6=sklearn.pipeline.C3766b6d26981d6(n7=skl earn.pipeline.C3766b6d2697592(n8=sklearn.compose._column_transformer.C3766b 6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c)), n10=sklearn.pipeline.C58a457b70f31c(n11=sklearn.compose._column_transformer .C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70 f2d5))),n13=fastsklearnfeature.transformations.HigherOrderCommutativeTransf ormation.C3766b6d2698571,c=sklearn.linear_model.logistic.LogisticRegression )(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state36479
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766b6d26986f6(n6=sklearn.pipeline.C3766b6d26981d6(n7=sklearn.pipeline.C3766b6d2697592(n8=sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c)),n10=sklearn.pipeline.C58a457b70f31c(n11=sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5))),n13=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b6d2698571,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766b6d26986f6(n6=sklearn.pipeline.C3766b6d26981d6(n7=sklearn.pipeline.C3766b6d2697592(n8=sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c)),n10=sklearn.pipeline.C58a457b70f31c(n11=sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5))),n13=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b6d2698571,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3766b6d26981d6(n7=sklearn.pipeline.C3766b6d2697592(n8=sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c)),n10=sklearn.pipeline.C58a457b70f31c(n11=sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5)))(1)_n_jobsnull
sklearn.pipeline.C3766b6d26981d6(n7=sklearn.pipeline.C3766b6d2697592(n8=sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c)),n10=sklearn.pipeline.C58a457b70f31c(n11=sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}]
sklearn.pipeline.C3766b6d26981d6(n7=sklearn.pipeline.C3766b6d2697592(n8=sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c)),n10=sklearn.pipeline.C58a457b70f31c(n11=sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5)))(1)_transformer_weightsnull
sklearn.pipeline.C3766b6d2697592(n8=sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c))(1)_memorynull
sklearn.pipeline.C3766b6d2697592(n8=sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8"}}]
sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b6d269736e(n9=sklearn.preprocessing._function_transformer.C3766b6d269717c)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3766b6d269717c(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b6d269717c(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b6d269717c(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b6d269717c(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b6d269717c(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b6d269717c(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b6d269717c(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b6d269717c(1)_validatefalse
sklearn.pipeline.C58a457b70f31c(n11=sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5))(1)_memorynull
sklearn.pipeline.C58a457b70f31c(n11=sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}]
sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b6d2697d71(n12=sklearn.preprocessing._function_transformer.C58a457b70f2d5)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C58a457b70f2d5(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58a457b70f2d5(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58a457b70f2d5(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58a457b70f2d5(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58a457b70f2d5(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58a457b70f2d5(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58a457b70f2d5(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58a457b70f2d5(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b6d2698571(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nanprod"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b6d2698571(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b6d2698571(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5887 ± 0.297
Per class
Cross-validation details (10-fold Crossvalidation)
0.8996 ± 0.101
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0132 ± 0.3198
Cross-validation details (10-fold Crossvalidation)
-848.8948 ± 5.6538
Cross-validation details (10-fold Crossvalidation)
0.4528 ± 0.0266
Cross-validation details (10-fold Crossvalidation)
0.1273 ± 0.0196
Cross-validation details (10-fold Crossvalidation)
138
Per class
Cross-validation details (10-fold Crossvalidation)
0.8734 ± 0.101
Per class
Cross-validation details (10-fold Crossvalidation)
0.9275 ± 0.0337
Cross-validation details (10-fold Crossvalidation)
0.3712
Cross-validation details (10-fold Crossvalidation)
0.9275 ± 0.0337
Per class
Cross-validation details (10-fold Crossvalidation)
3.5557 ± 0.9524
Cross-validation details (10-fold Crossvalidation)
0.247 ± 0.0592
Cross-validation details (10-fold Crossvalidation)
0.457 ± 0.0162
Cross-validation details (10-fold Crossvalidation)
1.8504 ± 1.4496
Cross-validation details (10-fold Crossvalidation)