Run
10228296

Run 10228296

Task 3656 (Supervised Classification) diabetes_numeric Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766b2c391c083(n27=sklearn.pipeline.C58a45138e919d(n28=sk learn.pipeline.C3766b2c39195e9(n29=sklearn.compose._column_transformer.C376 6b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87 )),n31=sklearn.pipeline.C3766b2c391aa53(n32=sklearn.compose._column_transfo rmer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b 2c391a58a))),n34=fastsklearnfeature.transformations.HigherOrderCommutativeT ransformation.C58a45138e9297,n35=fastsklearnfeature.transformations.OneDivi sionTransformation.C3766b2c391be06,c=sklearn.linear_model.logistic.Logistic Regression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C10
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state12681
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766b2c391c083(n27=sklearn.pipeline.C58a45138e919d(n28=sklearn.pipeline.C3766b2c39195e9(n29=sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87)),n31=sklearn.pipeline.C3766b2c391aa53(n32=sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a))),n34=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58a45138e9297,n35=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b2c391be06,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766b2c391c083(n27=sklearn.pipeline.C58a45138e919d(n28=sklearn.pipeline.C3766b2c39195e9(n29=sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87)),n31=sklearn.pipeline.C3766b2c391aa53(n32=sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a))),n34=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58a45138e9297,n35=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b2c391be06,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n27", "step_name": "n27"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n34", "step_name": "n34"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n35", "step_name": "n35"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58a45138e919d(n28=sklearn.pipeline.C3766b2c39195e9(n29=sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87)),n31=sklearn.pipeline.C3766b2c391aa53(n32=sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a)))(1)_n_jobsnull
sklearn.pipeline.C58a45138e919d(n28=sklearn.pipeline.C3766b2c39195e9(n29=sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87)),n31=sklearn.pipeline.C3766b2c391aa53(n32=sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n28", "step_name": "n28"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n31", "step_name": "n31"}}]
sklearn.pipeline.C58a45138e919d(n28=sklearn.pipeline.C3766b2c39195e9(n29=sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87)),n31=sklearn.pipeline.C3766b2c391aa53(n32=sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a)))(1)_transformer_weightsnull
sklearn.pipeline.C3766b2c39195e9(n29=sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87))(1)_memorynull
sklearn.pipeline.C3766b2c39195e9(n29=sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n29", "step_name": "n29"}}]
sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b2c3919111(n30=sklearn.preprocessing._function_transformer.C3766b2c3918d87)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n30", "step_name": "n30", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3766b2c3918d87(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b2c3918d87(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b2c3918d87(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b2c3918d87(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b2c3918d87(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b2c3918d87(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b2c3918d87(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b2c3918d87(1)_validatefalse
sklearn.pipeline.C3766b2c391aa53(n32=sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a))(1)_memorynull
sklearn.pipeline.C3766b2c391aa53(n32=sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n32", "step_name": "n32"}}]
sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b2c391a799(n33=sklearn.preprocessing._function_transformer.C3766b2c391a58a)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n33", "step_name": "n33", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3766b2c391a58a(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b2c391a58a(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b2c391a58a(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b2c391a58a(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b2c391a58a(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b2c391a58a(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b2c391a58a(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b2c391a58a(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58a45138e9297(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nansum"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58a45138e9297(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58a45138e9297(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5792 ± 0.403
Per class
Cross-validation details (10-fold Crossvalidation)
0.7262 ± 0.1301
Per class
Cross-validation details (10-fold Crossvalidation)
0.4239 ± 0.4157
Cross-validation details (10-fold Crossvalidation)
1.5076 ± 0.4788
Cross-validation details (10-fold Crossvalidation)
0.4607 ± 0.0307
Cross-validation details (10-fold Crossvalidation)
0.4791 ± 0.0218
Cross-validation details (10-fold Crossvalidation)
43
Per class
Cross-validation details (10-fold Crossvalidation)
0.756 ± 0.0855
Per class
Cross-validation details (10-fold Crossvalidation)
0.7442 ± 0.1755
Cross-validation details (10-fold Crossvalidation)
0.971
Cross-validation details (10-fold Crossvalidation)
0.7442 ± 0.1755
Per class
Cross-validation details (10-fold Crossvalidation)
0.9616 ± 0.0917
Cross-validation details (10-fold Crossvalidation)
0.4889 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
0.4686 ± 0.024
Cross-validation details (10-fold Crossvalidation)
0.9583 ± 0.0763
Cross-validation details (10-fold Crossvalidation)