Run
10228295

Run 10228295

Task 3656 (Supervised Classification) diabetes_numeric Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766b28bd250f0(n18=sklearn.pipeline.C3766b28bd24997(n19=s klearn.pipeline.C3766b28bd23c51(n20=sklearn.compose._column_transformer.C37 66b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374 f)),n22=sklearn.pipeline.C3766b28bd24635(n23=sklearn.compose._column_transf ormer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766 b28bd24350))),n25=fastsklearnfeature.transformations.HigherOrderCommutative Transformation.C58a450dfb6e2b,n26=fastsklearnfeature.transformations.OneDiv isionTransformation.C58a450dfb6e57,c=sklearn.linear_model.logistic.Logistic Regression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C10
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state13877
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766b28bd250f0(n18=sklearn.pipeline.C3766b28bd24997(n19=sklearn.pipeline.C3766b28bd23c51(n20=sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f)),n22=sklearn.pipeline.C3766b28bd24635(n23=sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350))),n25=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58a450dfb6e2b,n26=fastsklearnfeature.transformations.OneDivisionTransformation.C58a450dfb6e57,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766b28bd250f0(n18=sklearn.pipeline.C3766b28bd24997(n19=sklearn.pipeline.C3766b28bd23c51(n20=sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f)),n22=sklearn.pipeline.C3766b28bd24635(n23=sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350))),n25=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58a450dfb6e2b,n26=fastsklearnfeature.transformations.OneDivisionTransformation.C58a450dfb6e57,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n18", "step_name": "n18"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n25", "step_name": "n25"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n26", "step_name": "n26"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3766b28bd24997(n19=sklearn.pipeline.C3766b28bd23c51(n20=sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f)),n22=sklearn.pipeline.C3766b28bd24635(n23=sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350)))(1)_n_jobsnull
sklearn.pipeline.C3766b28bd24997(n19=sklearn.pipeline.C3766b28bd23c51(n20=sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f)),n22=sklearn.pipeline.C3766b28bd24635(n23=sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n19", "step_name": "n19"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n22", "step_name": "n22"}}]
sklearn.pipeline.C3766b28bd24997(n19=sklearn.pipeline.C3766b28bd23c51(n20=sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f)),n22=sklearn.pipeline.C3766b28bd24635(n23=sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350)))(1)_transformer_weightsnull
sklearn.pipeline.C3766b28bd23c51(n20=sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f))(1)_memorynull
sklearn.pipeline.C3766b28bd23c51(n20=sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n20", "step_name": "n20"}}]
sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b28bd2399e(n21=sklearn.preprocessing._function_transformer.C3766b28bd2374f)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n21", "step_name": "n21", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3766b28bd2374f(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b28bd2374f(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b28bd2374f(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b28bd2374f(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b28bd2374f(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b28bd2374f(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b28bd2374f(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b28bd2374f(1)_validatefalse
sklearn.pipeline.C3766b28bd24635(n23=sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350))(1)_memorynull
sklearn.pipeline.C3766b28bd24635(n23=sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n23", "step_name": "n23"}}]
sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b28bd24478(n24=sklearn.preprocessing._function_transformer.C3766b28bd24350)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n24", "step_name": "n24", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3766b28bd24350(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b28bd24350(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b28bd24350(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b28bd24350(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b28bd24350(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b28bd24350(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b28bd24350(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b28bd24350(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58a450dfb6e2b(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nansum"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58a450dfb6e2b(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C58a450dfb6e2b(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5792 ± 0.403
Per class
Cross-validation details (10-fold Crossvalidation)
0.7262 ± 0.1301
Per class
Cross-validation details (10-fold Crossvalidation)
0.4239 ± 0.4157
Cross-validation details (10-fold Crossvalidation)
1.5076 ± 0.4788
Cross-validation details (10-fold Crossvalidation)
0.4607 ± 0.0307
Cross-validation details (10-fold Crossvalidation)
0.4791 ± 0.0218
Cross-validation details (10-fold Crossvalidation)
43
Per class
Cross-validation details (10-fold Crossvalidation)
0.756 ± 0.0855
Per class
Cross-validation details (10-fold Crossvalidation)
0.7442 ± 0.1755
Cross-validation details (10-fold Crossvalidation)
0.971
Cross-validation details (10-fold Crossvalidation)
0.7442 ± 0.1755
Per class
Cross-validation details (10-fold Crossvalidation)
0.9616 ± 0.0917
Cross-validation details (10-fold Crossvalidation)
0.4889 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
0.4686 ± 0.024
Cross-validation details (10-fold Crossvalidation)
0.9583 ± 0.0763
Cross-validation details (10-fold Crossvalidation)