Run
10228294

Run 10228294

Task 3656 (Supervised Classification) diabetes_numeric Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766b2755d6308(n9=sklearn.pipeline.C3766b2755d57cc(n10=sk learn.pipeline.C3766b2755d47be(n11=sklearn.compose._column_transformer.C376 6b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0 )),n13=sklearn.pipeline.C3766b2755d5314(n14=sklearn.compose._column_transfo rmer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2 755d5019))),n16=fastsklearnfeature.transformations.HigherOrderCommutativeTr ansformation.C3766b2755d5e35,n17=fastsklearnfeature.transformations.OneDivi sionTransformation.C3766b2755d610a,c=sklearn.linear_model.logistic.Logistic Regression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C10
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state34895
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766b2755d6308(n9=sklearn.pipeline.C3766b2755d57cc(n10=sklearn.pipeline.C3766b2755d47be(n11=sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0)),n13=sklearn.pipeline.C3766b2755d5314(n14=sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019))),n16=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b2755d5e35,n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b2755d610a,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766b2755d6308(n9=sklearn.pipeline.C3766b2755d57cc(n10=sklearn.pipeline.C3766b2755d47be(n11=sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0)),n13=sklearn.pipeline.C3766b2755d5314(n14=sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019))),n16=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b2755d5e35,n17=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b2755d610a,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n16", "step_name": "n16"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n17", "step_name": "n17"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3766b2755d57cc(n10=sklearn.pipeline.C3766b2755d47be(n11=sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0)),n13=sklearn.pipeline.C3766b2755d5314(n14=sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019)))(1)_n_jobsnull
sklearn.pipeline.C3766b2755d57cc(n10=sklearn.pipeline.C3766b2755d47be(n11=sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0)),n13=sklearn.pipeline.C3766b2755d5314(n14=sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n13", "step_name": "n13"}}]
sklearn.pipeline.C3766b2755d57cc(n10=sklearn.pipeline.C3766b2755d47be(n11=sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0)),n13=sklearn.pipeline.C3766b2755d5314(n14=sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019)))(1)_transformer_weightsnull
sklearn.pipeline.C3766b2755d47be(n11=sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0))(1)_memorynull
sklearn.pipeline.C3766b2755d47be(n11=sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n11", "step_name": "n11"}}]
sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b2755d450b(n12=sklearn.preprocessing._function_transformer.C3766b2755d42c0)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n12", "step_name": "n12", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3766b2755d42c0(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b2755d42c0(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b2755d42c0(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b2755d42c0(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b2755d42c0(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b2755d42c0(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b2755d42c0(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b2755d42c0(1)_validatefalse
sklearn.pipeline.C3766b2755d5314(n14=sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019))(1)_memorynull
sklearn.pipeline.C3766b2755d5314(n14=sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n14", "step_name": "n14"}}]
sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019)(1)_n_jobsnull
sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019)(1)_remainder"drop"
sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58a450bbc8822(n15=sklearn.preprocessing._function_transformer.C3766b2755d5019)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n15", "step_name": "n15", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3766b2755d5019(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b2755d5019(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b2755d5019(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b2755d5019(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b2755d5019(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b2755d5019(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b2755d5019(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b2755d5019(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b2755d5e35(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nansum"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b2755d5e35(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766b2755d5e35(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.5792 ± 0.403
Per class
Cross-validation details (10-fold Crossvalidation)
0.7262 ± 0.1301
Per class
Cross-validation details (10-fold Crossvalidation)
0.4239 ± 0.4157
Cross-validation details (10-fold Crossvalidation)
1.5076 ± 0.4788
Cross-validation details (10-fold Crossvalidation)
0.4607 ± 0.0307
Cross-validation details (10-fold Crossvalidation)
0.4791 ± 0.0218
Cross-validation details (10-fold Crossvalidation)
43
Per class
Cross-validation details (10-fold Crossvalidation)
0.756 ± 0.0855
Per class
Cross-validation details (10-fold Crossvalidation)
0.7442 ± 0.1755
Cross-validation details (10-fold Crossvalidation)
0.971
Cross-validation details (10-fold Crossvalidation)
0.7442 ± 0.1755
Per class
Cross-validation details (10-fold Crossvalidation)
0.9616 ± 0.0917
Cross-validation details (10-fold Crossvalidation)
0.4889 ± 0.0226
Cross-validation details (10-fold Crossvalidation)
0.4686 ± 0.024
Cross-validation details (10-fold Crossvalidation)
0.9583 ± 0.0763
Cross-validation details (10-fold Crossvalidation)