Run
10228289

Run 10228289

Task 3562 (Supervised Classification) lupus Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766b01befdaf0(n33=sklearn.pipeline.C3766b01befd5ad(n34=s klearn.pipeline.C58a44cf97faa0(n35=sklearn.compose._column_transformer.C376 6b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384 ),n37=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b01 befc878),n38=sklearn.pipeline.C3766b01befd329(n39=sklearn.compose._column_t ransformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer. C3766b01befd0c5))),n41=fastsklearnfeature.transformations.IdentityTransform ation.C3766b01befd9c6,c=sklearn.linear_model.logistic.LogisticRegression)(1 )Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C1000
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state4039
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766b01befdaf0(n33=sklearn.pipeline.C3766b01befd5ad(n34=sklearn.pipeline.C58a44cf97faa0(n35=sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384),n37=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b01befc878),n38=sklearn.pipeline.C3766b01befd329(n39=sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5))),n41=fastsklearnfeature.transformations.IdentityTransformation.C3766b01befd9c6,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766b01befdaf0(n33=sklearn.pipeline.C3766b01befd5ad(n34=sklearn.pipeline.C58a44cf97faa0(n35=sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384),n37=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b01befc878),n38=sklearn.pipeline.C3766b01befd329(n39=sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5))),n41=fastsklearnfeature.transformations.IdentityTransformation.C3766b01befd9c6,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n33", "step_name": "n33"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n41", "step_name": "n41"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3766b01befd5ad(n34=sklearn.pipeline.C58a44cf97faa0(n35=sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384),n37=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b01befc878),n38=sklearn.pipeline.C3766b01befd329(n39=sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5)))(1)_n_jobsnull
sklearn.pipeline.C3766b01befd5ad(n34=sklearn.pipeline.C58a44cf97faa0(n35=sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384),n37=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b01befc878),n38=sklearn.pipeline.C3766b01befd329(n39=sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n34", "step_name": "n34"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n38", "step_name": "n38"}}]
sklearn.pipeline.C3766b01befd5ad(n34=sklearn.pipeline.C58a44cf97faa0(n35=sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384),n37=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b01befc878),n38=sklearn.pipeline.C3766b01befd329(n39=sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5)))(1)_transformer_weightsnull
sklearn.pipeline.C58a44cf97faa0(n35=sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384),n37=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b01befc878)(1)_memorynull
sklearn.pipeline.C58a44cf97faa0(n35=sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384),n37=fastsklearnfeature.transformations.OneDivisionTransformation.C3766b01befc878)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n35", "step_name": "n35"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n37", "step_name": "n37"}}]
sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b01befc5cf(n36=sklearn.preprocessing._function_transformer.C3766b01befc384)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n36", "step_name": "n36", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3766b01befc384(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b01befc384(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b01befc384(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b01befc384(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b01befc384(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b01befc384(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b01befc384(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b01befc384(1)_validatefalse
sklearn.pipeline.C3766b01befd329(n39=sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5))(1)_memorynull
sklearn.pipeline.C3766b01befd329(n39=sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n39", "step_name": "n39"}}]
sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766b01befd1d0(n40=sklearn.preprocessing._function_transformer.C3766b01befd0c5)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n40", "step_name": "n40", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C3766b01befd0c5(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766b01befd0c5(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766b01befd0c5(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766b01befd0c5(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b01befd0c5(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766b01befd0c5(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766b01befd0c5(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766b01befd0c5(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C3766b01befd9c6(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.8187 ± 0.1223
Per class
Cross-validation details (10-fold Crossvalidation)
0.7409 ± 0.1219
Per class
Cross-validation details (10-fold Crossvalidation)
0.4603 ± 0.2448
Cross-validation details (10-fold Crossvalidation)
14.9462 ± 0.7365
Cross-validation details (10-fold Crossvalidation)
0.4111 ± 0.0285
Cross-validation details (10-fold Crossvalidation)
0.4813 ± 0.0091
Cross-validation details (10-fold Crossvalidation)
87
Per class
Cross-validation details (10-fold Crossvalidation)
0.7791 ± 0.1327
Per class
Cross-validation details (10-fold Crossvalidation)
0.7586 ± 0.1136
Cross-validation details (10-fold Crossvalidation)
0.9735
Cross-validation details (10-fold Crossvalidation)
0.7586 ± 0.1136
Per class
Cross-validation details (10-fold Crossvalidation)
0.854 ± 0.0656
Cross-validation details (10-fold Crossvalidation)
0.4904 ± 0.0094
Cross-validation details (10-fold Crossvalidation)
0.4344 ± 0.0288
Cross-validation details (10-fold Crossvalidation)
0.8858 ± 0.0635
Cross-validation details (10-fold Crossvalidation)