Run
10228281

Run 10228281

Task 10103 (Supervised Classification) volcanoes-a1 Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766a629cd4c60(n22=sklearn.pipeline.C3766a629cd4573(n23=s klearn.pipeline.C58a43d0faec30(n24=sklearn.compose._column_transformer.C8dd 394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518)) ,n26=sklearn.pipeline.C58a43d0faed12(n27=sklearn.compose._column_transforme r.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629 cd4069))),n29=fastsklearnfeature.transformations.HigherOrderCommutativeTran sformation.C3766a629cd48fd,n30=fastsklearnfeature.transformations.OneDivisi onTransformation.C58a43d0faede3,c=sklearn.linear_model.logistic.LogisticReg ression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state63307
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766a629cd4c60(n22=sklearn.pipeline.C3766a629cd4573(n23=sklearn.pipeline.C58a43d0faec30(n24=sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518)),n26=sklearn.pipeline.C58a43d0faed12(n27=sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069))),n29=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766a629cd48fd,n30=fastsklearnfeature.transformations.OneDivisionTransformation.C58a43d0faede3,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766a629cd4c60(n22=sklearn.pipeline.C3766a629cd4573(n23=sklearn.pipeline.C58a43d0faec30(n24=sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518)),n26=sklearn.pipeline.C58a43d0faed12(n27=sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069))),n29=fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766a629cd48fd,n30=fastsklearnfeature.transformations.OneDivisionTransformation.C58a43d0faede3,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n22", "step_name": "n22"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n29", "step_name": "n29"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n30", "step_name": "n30"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3766a629cd4573(n23=sklearn.pipeline.C58a43d0faec30(n24=sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518)),n26=sklearn.pipeline.C58a43d0faed12(n27=sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069)))(1)_n_jobsnull
sklearn.pipeline.C3766a629cd4573(n23=sklearn.pipeline.C58a43d0faec30(n24=sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518)),n26=sklearn.pipeline.C58a43d0faed12(n27=sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n23", "step_name": "n23"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n26", "step_name": "n26"}}]
sklearn.pipeline.C3766a629cd4573(n23=sklearn.pipeline.C58a43d0faec30(n24=sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518)),n26=sklearn.pipeline.C58a43d0faed12(n27=sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069)))(1)_transformer_weightsnull
sklearn.pipeline.C58a43d0faec30(n24=sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518))(1)_memorynull
sklearn.pipeline.C58a43d0faec30(n24=sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n24", "step_name": "n24"}}]
sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518)(1)_n_jobsnull
sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518)(1)_remainder"drop"
sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C8dd394e5e465(n25=sklearn.preprocessing._function_transformer.C3766a629cd3518)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n25", "step_name": "n25", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C3766a629cd3518(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766a629cd3518(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766a629cd3518(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766a629cd3518(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766a629cd3518(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766a629cd3518(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766a629cd3518(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766a629cd3518(1)_validatefalse
sklearn.pipeline.C58a43d0faed12(n27=sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069))(1)_memorynull
sklearn.pipeline.C58a43d0faed12(n27=sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n27", "step_name": "n27"}}]
sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766a629cd415c(n28=sklearn.preprocessing._function_transformer.C3766a629cd4069)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n28", "step_name": "n28", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C3766a629cd4069(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766a629cd4069(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766a629cd4069(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766a629cd4069(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766a629cd4069(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766a629cd4069(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766a629cd4069(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766a629cd4069(1)_validatefalse
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766a629cd48fd(1)_method{"oml-python:serialized_object": "function", "value": "numpy.nansum"}
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766a629cd48fd(1)_number_parent_features2
fastsklearnfeature.transformations.HigherOrderCommutativeTransformation.C3766a629cd48fd(1)_sympy_method0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.5504 ± 0.0392
Per class
Cross-validation details (10-fold Crossvalidation)
-13009.0854 ± 4.7955
Cross-validation details (10-fold Crossvalidation)
0.32 ± 0
Cross-validation details (10-fold Crossvalidation)
0.0699 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
3252
Per class
Cross-validation details (10-fold Crossvalidation)
0.9077 ± 0.002
Cross-validation details (10-fold Crossvalidation)
0.6323
Cross-validation details (10-fold Crossvalidation)
0.9077 ± 0.002
Per class
Cross-validation details (10-fold Crossvalidation)
4.5775 ± 0.0451
Cross-validation details (10-fold Crossvalidation)
0.1864 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.4 ± 0
Cross-validation details (10-fold Crossvalidation)
2.1454 ± 0.0213
Cross-validation details (10-fold Crossvalidation)