Run
10228275

Run 10228275

Task 59 (Supervised Classification) iris Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C37669ff17d8f25(n3=sklearn.pipeline.C37669ff17d84e4(n4=skl earn.pipeline.C37669ff17d6b8d(n5=sklearn.compose._column_transformer.C37669 ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d)), n7=sklearn.pipeline.C37669ff17d7eb1(n8=sklearn.compose._column_transformer. C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d7 95a))),n10=fastsklearnfeature.transformations.IdentityTransformation.C37669 ff17d8c66,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.1
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state23016
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C37669ff17d8f25(n3=sklearn.pipeline.C37669ff17d84e4(n4=sklearn.pipeline.C37669ff17d6b8d(n5=sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d)),n7=sklearn.pipeline.C37669ff17d7eb1(n8=sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a))),n10=fastsklearnfeature.transformations.IdentityTransformation.C37669ff17d8c66,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C37669ff17d8f25(n3=sklearn.pipeline.C37669ff17d84e4(n4=sklearn.pipeline.C37669ff17d6b8d(n5=sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d)),n7=sklearn.pipeline.C37669ff17d7eb1(n8=sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a))),n10=fastsklearnfeature.transformations.IdentityTransformation.C37669ff17d8c66,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n3", "step_name": "n3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C37669ff17d84e4(n4=sklearn.pipeline.C37669ff17d6b8d(n5=sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d)),n7=sklearn.pipeline.C37669ff17d7eb1(n8=sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a)))(1)_n_jobsnull
sklearn.pipeline.C37669ff17d84e4(n4=sklearn.pipeline.C37669ff17d6b8d(n5=sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d)),n7=sklearn.pipeline.C37669ff17d7eb1(n8=sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n4", "step_name": "n4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}]
sklearn.pipeline.C37669ff17d84e4(n4=sklearn.pipeline.C37669ff17d6b8d(n5=sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d)),n7=sklearn.pipeline.C37669ff17d7eb1(n8=sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a)))(1)_transformer_weightsnull
sklearn.pipeline.C37669ff17d6b8d(n5=sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d))(1)_memorynull
sklearn.pipeline.C37669ff17d6b8d(n5=sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n5", "step_name": "n5"}}]
sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d)(1)_n_jobsnull
sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d)(1)_remainder"drop"
sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37669ff17d6681(n6=sklearn.preprocessing._function_transformer.C37669ff17d620d)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C37669ff17d620d(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37669ff17d620d(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37669ff17d620d(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37669ff17d620d(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37669ff17d620d(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37669ff17d620d(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37669ff17d620d(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37669ff17d620d(1)_validatefalse
sklearn.pipeline.C37669ff17d7eb1(n8=sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a))(1)_memorynull
sklearn.pipeline.C37669ff17d7eb1(n8=sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8"}}]
sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a)(1)_n_jobsnull
sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a)(1)_remainder"drop"
sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37669ff17d7b92(n9=sklearn.preprocessing._function_transformer.C37669ff17d795a)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C37669ff17d795a(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37669ff17d795a(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37669ff17d795a(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37669ff17d795a(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37669ff17d795a(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37669ff17d795a(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37669ff17d795a(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37669ff17d795a(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C37669ff17d8c66(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9969 ± 0.0047
Per class
Cross-validation details (10-fold Crossvalidation)
0.9667 ± 0.0355
Per class
Cross-validation details (10-fold Crossvalidation)
0.95 ± 0.0527
Cross-validation details (10-fold Crossvalidation)
105.8095 ± 0.4376
Cross-validation details (10-fold Crossvalidation)
0.1747 ± 0.0148
Cross-validation details (10-fold Crossvalidation)
0.4444
Cross-validation details (10-fold Crossvalidation)
150
Per class
Cross-validation details (10-fold Crossvalidation)
0.9668 ± 0.0293
Per class
Cross-validation details (10-fold Crossvalidation)
0.9667 ± 0.0351
Cross-validation details (10-fold Crossvalidation)
1.585
Cross-validation details (10-fold Crossvalidation)
0.9667 ± 0.0351
Per class
Cross-validation details (10-fold Crossvalidation)
0.393 ± 0.0333
Cross-validation details (10-fold Crossvalidation)
0.4714
Cross-validation details (10-fold Crossvalidation)
0.2324 ± 0.0187
Cross-validation details (10-fold Crossvalidation)
0.4929 ± 0.0397
Cross-validation details (10-fold Crossvalidation)