Run
10228270

Run 10228270

Task 23 (Supervised Classification) cmc Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C37669aa7e7518a(n3=sklearn.pipeline.C37669aa7e7477f(n4=skl earn.pipeline.C37669aa7e72fb1(n5=sklearn.compose._column_transformer.C37669 aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1)), n7=sklearn.pipeline.C37669aa7e7420f(n8=sklearn.compose._column_transformer. C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73 cf2))),n10=fastsklearnfeature.transformations.IdentityTransformation.C58a42 aa63ee4d,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C1
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state11766
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C37669aa7e7518a(n3=sklearn.pipeline.C37669aa7e7477f(n4=sklearn.pipeline.C37669aa7e72fb1(n5=sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1)),n7=sklearn.pipeline.C37669aa7e7420f(n8=sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2))),n10=fastsklearnfeature.transformations.IdentityTransformation.C58a42aa63ee4d,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C37669aa7e7518a(n3=sklearn.pipeline.C37669aa7e7477f(n4=sklearn.pipeline.C37669aa7e72fb1(n5=sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1)),n7=sklearn.pipeline.C37669aa7e7420f(n8=sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2))),n10=fastsklearnfeature.transformations.IdentityTransformation.C58a42aa63ee4d,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n3", "step_name": "n3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C37669aa7e7477f(n4=sklearn.pipeline.C37669aa7e72fb1(n5=sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1)),n7=sklearn.pipeline.C37669aa7e7420f(n8=sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2)))(1)_n_jobsnull
sklearn.pipeline.C37669aa7e7477f(n4=sklearn.pipeline.C37669aa7e72fb1(n5=sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1)),n7=sklearn.pipeline.C37669aa7e7420f(n8=sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n4", "step_name": "n4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}]
sklearn.pipeline.C37669aa7e7477f(n4=sklearn.pipeline.C37669aa7e72fb1(n5=sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1)),n7=sklearn.pipeline.C37669aa7e7420f(n8=sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2)))(1)_transformer_weightsnull
sklearn.pipeline.C37669aa7e72fb1(n5=sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1))(1)_memorynull
sklearn.pipeline.C37669aa7e72fb1(n5=sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n5", "step_name": "n5"}}]
sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1)(1)_n_jobsnull
sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1)(1)_remainder"drop"
sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37669aa7e72a8b(n6=sklearn.preprocessing._function_transformer.C37669aa7e725f1)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C37669aa7e725f1(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37669aa7e725f1(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37669aa7e725f1(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37669aa7e725f1(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37669aa7e725f1(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37669aa7e725f1(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37669aa7e725f1(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37669aa7e725f1(1)_validatefalse
sklearn.pipeline.C37669aa7e7420f(n8=sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2))(1)_memorynull
sklearn.pipeline.C37669aa7e7420f(n8=sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8"}}]
sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2)(1)_n_jobsnull
sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2)(1)_remainder"drop"
sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37669aa7e73f2c(n9=sklearn.preprocessing._function_transformer.C37669aa7e73cf2)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C37669aa7e73cf2(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37669aa7e73cf2(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37669aa7e73cf2(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37669aa7e73cf2(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37669aa7e73cf2(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37669aa7e73cf2(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37669aa7e73cf2(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37669aa7e73cf2(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C58a42aa63ee4d(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.6347 ± 0.0308
Per class
Cross-validation details (10-fold Crossvalidation)
0.4674 ± 0.0279
Per class
Cross-validation details (10-fold Crossvalidation)
0.1898 ± 0.0396
Cross-validation details (10-fold Crossvalidation)
136.219 ± 2.0658
Cross-validation details (10-fold Crossvalidation)
0.4225 ± 0.0048
Cross-validation details (10-fold Crossvalidation)
0.4308 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
1473
Per class
Cross-validation details (10-fold Crossvalidation)
0.4782 ± 0.0273
Per class
Cross-validation details (10-fold Crossvalidation)
0.4705 ± 0.0263
Cross-validation details (10-fold Crossvalidation)
1.5392
Cross-validation details (10-fold Crossvalidation)
0.4705 ± 0.0263
Per class
Cross-validation details (10-fold Crossvalidation)
0.9807 ± 0.0115
Cross-validation details (10-fold Crossvalidation)
0.4641 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.4593 ± 0.0053
Cross-validation details (10-fold Crossvalidation)
0.9897 ± 0.0117
Cross-validation details (10-fold Crossvalidation)