Run
10228247

Run 10228247

Task 2079 (Supervised Classification) eucalyptus Uploaded 01-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.20.3. Test
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3766655b1eb026(n1=sklearn.pipeline.C3766655b1eac53(n2=skl earn.pipeline.C58a3d55e976a8(n3=sklearn.compose._column_transformer.C58a3d5 5e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53),n5= fastsklearnfeature.transformations.PandasDiscretizerTransformation.C3766655 b1ea180),n6=sklearn.pipeline.C58a3d55e97763(n7=sklearn.compose._column_tran sformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C376 6655b1ea626),n9=fastsklearnfeature.transformations.ImputationTransformation .C3766655b1ea8f1)),n10=fastsklearnfeature.transformations.IdentityTransform ation.C3766655b1eaf52,c=sklearn.linear_model.logistic.LogisticRegression)(1 )Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C1.0
sklearn.linear_model.logistic.LogisticRegression(23)_class_weightnull
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter100
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"warn"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state9814
sklearn.linear_model.logistic.LogisticRegression(23)_solver"warn"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3766655b1eb026(n1=sklearn.pipeline.C3766655b1eac53(n2=sklearn.pipeline.C58a3d55e976a8(n3=sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C3766655b1ea180),n6=sklearn.pipeline.C58a3d55e97763(n7=sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626),n9=fastsklearnfeature.transformations.ImputationTransformation.C3766655b1ea8f1)),n10=fastsklearnfeature.transformations.IdentityTransformation.C3766655b1eaf52,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3766655b1eb026(n1=sklearn.pipeline.C3766655b1eac53(n2=sklearn.pipeline.C58a3d55e976a8(n3=sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C3766655b1ea180),n6=sklearn.pipeline.C58a3d55e97763(n7=sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626),n9=fastsklearnfeature.transformations.ImputationTransformation.C3766655b1ea8f1)),n10=fastsklearnfeature.transformations.IdentityTransformation.C3766655b1eaf52,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n1", "step_name": "n1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3766655b1eac53(n2=sklearn.pipeline.C58a3d55e976a8(n3=sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C3766655b1ea180),n6=sklearn.pipeline.C58a3d55e97763(n7=sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626),n9=fastsklearnfeature.transformations.ImputationTransformation.C3766655b1ea8f1))(1)_n_jobsnull
sklearn.pipeline.C3766655b1eac53(n2=sklearn.pipeline.C58a3d55e976a8(n3=sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C3766655b1ea180),n6=sklearn.pipeline.C58a3d55e97763(n7=sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626),n9=fastsklearnfeature.transformations.ImputationTransformation.C3766655b1ea8f1))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n2", "step_name": "n2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6"}}]
sklearn.pipeline.C3766655b1eac53(n2=sklearn.pipeline.C58a3d55e976a8(n3=sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C3766655b1ea180),n6=sklearn.pipeline.C58a3d55e97763(n7=sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626),n9=fastsklearnfeature.transformations.ImputationTransformation.C3766655b1ea8f1))(1)_transformer_weightsnull
sklearn.pipeline.C58a3d55e976a8(n3=sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C3766655b1ea180)(1)_memorynull
sklearn.pipeline.C58a3d55e976a8(n3=sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53),n5=fastsklearnfeature.transformations.PandasDiscretizerTransformation.C3766655b1ea180)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n3", "step_name": "n3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n5", "step_name": "n5"}}]
sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53)(1)_n_jobsnull
sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53)(1)_remainder"drop"
sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58a3d55e97660(n4=sklearn.preprocessing._function_transformer.C3766655b1e9e53)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n4", "step_name": "n4", "argument_1": [14]}}]
sklearn.preprocessing._function_transformer.C3766655b1e9e53(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766655b1e9e53(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766655b1e9e53(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766655b1e9e53(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766655b1e9e53(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766655b1e9e53(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766655b1e9e53(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766655b1e9e53(1)_validatefalse
fastsklearnfeature.transformations.PandasDiscretizerTransformation.C3766655b1ea180(1)_number_bins10
fastsklearnfeature.transformations.PandasDiscretizerTransformation.C3766655b1ea180(1)_qbucketfalse
sklearn.pipeline.C58a3d55e97763(n7=sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626),n9=fastsklearnfeature.transformations.ImputationTransformation.C3766655b1ea8f1)(1)_memorynull
sklearn.pipeline.C58a3d55e97763(n7=sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626),n9=fastsklearnfeature.transformations.ImputationTransformation.C3766655b1ea8f1)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9"}}]
sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626)(1)_n_jobsnull
sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626)(1)_remainder"drop"
sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3766655b1ea795(n8=sklearn.preprocessing._function_transformer.C3766655b1ea626)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8", "argument_1": [17]}}]
sklearn.preprocessing._function_transformer.C3766655b1ea626(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3766655b1ea626(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3766655b1ea626(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3766655b1ea626(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3766655b1ea626(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3766655b1ea626(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3766655b1ea626(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3766655b1ea626(1)_validatefalse
fastsklearnfeature.transformations.ImputationTransformation.C3766655b1ea8f1(1)_strategy"mean"
fastsklearnfeature.transformations.IdentityTransformation.C3766655b1eaf52(1)_number_parent_features2

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.8539 ± 0.0204
Per class
Cross-validation details (10-fold Crossvalidation)
0.3139 ± 0.0283
Cross-validation details (10-fold Crossvalidation)
226.0711 ± 1.057
Cross-validation details (10-fold Crossvalidation)
0.2519 ± 0.004
Cross-validation details (10-fold Crossvalidation)
0.3132 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
736
Per class
Cross-validation details (10-fold Crossvalidation)
0.5027 ± 0.02
Cross-validation details (10-fold Crossvalidation)
2.2629
Cross-validation details (10-fold Crossvalidation)
0.5027 ± 0.02
Per class
Cross-validation details (10-fold Crossvalidation)
0.8041 ± 0.0129
Cross-validation details (10-fold Crossvalidation)
0.3957 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.3414 ± 0.0045
Cross-validation details (10-fold Crossvalidation)
0.8626 ± 0.0115
Cross-validation details (10-fold Crossvalidation)