torch.nn.modules.container.Sequential.76a66495193bbf33(1) | Automatically created pytorch flow. |
torch.nn.modules.container.Sequential.76a66495193bbf33(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.modules.container.Sequential.5cd5f51d8bb8a600(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}] |
openml.extensions.pytorch.layers.functional.Functional.82a28fd1728be65f(1)_args | [] |
openml.extensions.pytorch.layers.functional.Functional.82a28fd1728be65f(1)_function | {"oml-python:serialized_object": "methoddescriptor", "value": "torch._C._TensorBase.reshape"} |
openml.extensions.pytorch.layers.functional.Functional.82a28fd1728be65f(1)_kwargs | {"shape": [-1, 1, 28, 28]} |
torch.nn.modules.batchnorm.BatchNorm2d.e999ad8455297f8b(1)_affine | true |
torch.nn.modules.batchnorm.BatchNorm2d.e999ad8455297f8b(1)_eps | 1e-05 |
torch.nn.modules.batchnorm.BatchNorm2d.e999ad8455297f8b(1)_momentum | 0.1 |
torch.nn.modules.batchnorm.BatchNorm2d.e999ad8455297f8b(1)_num_features | 1 |
torch.nn.modules.batchnorm.BatchNorm2d.e999ad8455297f8b(1)_track_running_stats | true |
torch.nn.modules.container.Sequential.aae74a8f9841de32(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "5", "step_name": "5"}}] |
torch.nn.modules.conv.Conv2d.ca8e26a787230896(1)_dilation | [1, 1] |
torch.nn.modules.conv.Conv2d.ca8e26a787230896(1)_groups | 1 |
torch.nn.modules.conv.Conv2d.ca8e26a787230896(1)_in_channels | 1 |
torch.nn.modules.conv.Conv2d.ca8e26a787230896(1)_kernel_size | [5, 5] |
torch.nn.modules.conv.Conv2d.ca8e26a787230896(1)_out_channels | 32 |
torch.nn.modules.conv.Conv2d.ca8e26a787230896(1)_padding | [0, 0] |
torch.nn.modules.conv.Conv2d.ca8e26a787230896(1)_padding_mode | "zeros" |
torch.nn.modules.conv.Conv2d.ca8e26a787230896(1)_stride | [1, 1] |
torch.nn.modules.activation.LeakyReLU.34e87239c9361b27(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.34e87239c9361b27(1)_negative_slope | 0.01 |
torch.nn.modules.pooling.MaxPool2d.ee5df0a1d6fa36f3(1)_ceil_mode | false |
torch.nn.modules.pooling.MaxPool2d.ee5df0a1d6fa36f3(1)_dilation | 1 |
torch.nn.modules.pooling.MaxPool2d.ee5df0a1d6fa36f3(1)_kernel_size | 2 |
torch.nn.modules.pooling.MaxPool2d.ee5df0a1d6fa36f3(1)_padding | 0 |
torch.nn.modules.pooling.MaxPool2d.ee5df0a1d6fa36f3(1)_return_indices | false |
torch.nn.modules.pooling.MaxPool2d.ee5df0a1d6fa36f3(1)_stride | 2 |
torch.nn.modules.conv.Conv2d.111f54c3bafade69(1)_dilation | [1, 1] |
torch.nn.modules.conv.Conv2d.111f54c3bafade69(1)_groups | 1 |
torch.nn.modules.conv.Conv2d.111f54c3bafade69(1)_in_channels | 32 |
torch.nn.modules.conv.Conv2d.111f54c3bafade69(1)_kernel_size | [5, 5] |
torch.nn.modules.conv.Conv2d.111f54c3bafade69(1)_out_channels | 64 |
torch.nn.modules.conv.Conv2d.111f54c3bafade69(1)_padding | [0, 0] |
torch.nn.modules.conv.Conv2d.111f54c3bafade69(1)_padding_mode | "zeros" |
torch.nn.modules.conv.Conv2d.111f54c3bafade69(1)_stride | [1, 1] |
torch.nn.modules.activation.LeakyReLU.7d0779e43f1d3cd3(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.7d0779e43f1d3cd3(1)_negative_slope | 0.01 |
torch.nn.modules.pooling.MaxPool2d.6ff55af3493ed6f8(1)_ceil_mode | false |
torch.nn.modules.pooling.MaxPool2d.6ff55af3493ed6f8(1)_dilation | 1 |
torch.nn.modules.pooling.MaxPool2d.6ff55af3493ed6f8(1)_kernel_size | 2 |
torch.nn.modules.pooling.MaxPool2d.6ff55af3493ed6f8(1)_padding | 0 |
torch.nn.modules.pooling.MaxPool2d.6ff55af3493ed6f8(1)_return_indices | false |
torch.nn.modules.pooling.MaxPool2d.6ff55af3493ed6f8(1)_stride | 2 |
torch.nn.modules.container.Sequential.7d244eb7741117dc(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}] |
openml.extensions.pytorch.layers.functional.Functional.1874255bf6a003d3(1)_args | [] |
openml.extensions.pytorch.layers.functional.Functional.1874255bf6a003d3(1)_function | {"oml-python:serialized_object": "methoddescriptor", "value": "torch._C._TensorBase.reshape"} |
openml.extensions.pytorch.layers.functional.Functional.1874255bf6a003d3(1)_kwargs | {"shape": [-1, 1024]} |
torch.nn.modules.linear.Linear.917e92dc3dea6141(1)_in_features | 1024 |
torch.nn.modules.linear.Linear.917e92dc3dea6141(1)_out_features | 256 |
torch.nn.modules.activation.LeakyReLU.d5e8a926feb9c003(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.d5e8a926feb9c003(1)_negative_slope | 0.01 |
torch.nn.modules.dropout.Dropout.6540d19260434914(1)_inplace | false |
torch.nn.modules.dropout.Dropout.6540d19260434914(1)_p | 0.5 |
torch.nn.modules.linear.Linear.7d453b4fe14fca36(1)_in_features | 256 |
torch.nn.modules.linear.Linear.7d453b4fe14fca36(1)_out_features | 10 |