torch.nn.modules.container.Sequential.a95d844327dbebad(1) | Automatically created pytorch flow. |
torch.nn.modules.container.Sequential.a95d844327dbebad(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}] |
torch.nn.modules.container.Sequential.60829d9075ebf4b4(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}] |
openml.extensions.pytorch.layers.functional.Functional.c77a978dab3be482(1)_args | [] |
openml.extensions.pytorch.layers.functional.Functional.c77a978dab3be482(1)_function | {"oml-python:serialized_object": "methoddescriptor", "value": "torch._C._TensorBase.reshape"} |
openml.extensions.pytorch.layers.functional.Functional.c77a978dab3be482(1)_kwargs | {"shape": [-1, 1, 28, 28]} |
torch.nn.modules.batchnorm.BatchNorm2d.5cb35bb32e9c9451(1)_affine | true |
torch.nn.modules.batchnorm.BatchNorm2d.5cb35bb32e9c9451(1)_eps | 1e-05 |
torch.nn.modules.batchnorm.BatchNorm2d.5cb35bb32e9c9451(1)_momentum | 0.1 |
torch.nn.modules.batchnorm.BatchNorm2d.5cb35bb32e9c9451(1)_num_features | 1 |
torch.nn.modules.batchnorm.BatchNorm2d.5cb35bb32e9c9451(1)_track_running_stats | true |
torch.nn.modules.container.Sequential.4ca155e9ccb7de8b(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "5", "step_name": "5"}}] |
torch.nn.modules.conv.Conv2d.3480db777fc44c45(1)_dilation | [1, 1] |
torch.nn.modules.conv.Conv2d.3480db777fc44c45(1)_groups | 1 |
torch.nn.modules.conv.Conv2d.3480db777fc44c45(1)_in_channels | 1 |
torch.nn.modules.conv.Conv2d.3480db777fc44c45(1)_kernel_size | [5, 5] |
torch.nn.modules.conv.Conv2d.3480db777fc44c45(1)_out_channels | 32 |
torch.nn.modules.conv.Conv2d.3480db777fc44c45(1)_padding | [0, 0] |
torch.nn.modules.conv.Conv2d.3480db777fc44c45(1)_padding_mode | "zeros" |
torch.nn.modules.conv.Conv2d.3480db777fc44c45(1)_stride | [1, 1] |
torch.nn.modules.activation.LeakyReLU.2ac1020a4a99f784(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.2ac1020a4a99f784(1)_negative_slope | 0.01 |
torch.nn.modules.pooling.MaxPool2d.41f381d9dbdb8ddb(1)_ceil_mode | false |
torch.nn.modules.pooling.MaxPool2d.41f381d9dbdb8ddb(1)_dilation | 1 |
torch.nn.modules.pooling.MaxPool2d.41f381d9dbdb8ddb(1)_kernel_size | 2 |
torch.nn.modules.pooling.MaxPool2d.41f381d9dbdb8ddb(1)_padding | 0 |
torch.nn.modules.pooling.MaxPool2d.41f381d9dbdb8ddb(1)_return_indices | false |
torch.nn.modules.pooling.MaxPool2d.41f381d9dbdb8ddb(1)_stride | 2 |
torch.nn.modules.conv.Conv2d.a4f6bc76365b0499(1)_dilation | [1, 1] |
torch.nn.modules.conv.Conv2d.a4f6bc76365b0499(1)_groups | 1 |
torch.nn.modules.conv.Conv2d.a4f6bc76365b0499(1)_in_channels | 32 |
torch.nn.modules.conv.Conv2d.a4f6bc76365b0499(1)_kernel_size | [5, 5] |
torch.nn.modules.conv.Conv2d.a4f6bc76365b0499(1)_out_channels | 64 |
torch.nn.modules.conv.Conv2d.a4f6bc76365b0499(1)_padding | [0, 0] |
torch.nn.modules.conv.Conv2d.a4f6bc76365b0499(1)_padding_mode | "zeros" |
torch.nn.modules.conv.Conv2d.a4f6bc76365b0499(1)_stride | [1, 1] |
torch.nn.modules.activation.LeakyReLU.42315ab450790bb8(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.42315ab450790bb8(1)_negative_slope | 0.01 |
torch.nn.modules.pooling.MaxPool2d.a0e0fd4c3ebac3cd(1)_ceil_mode | false |
torch.nn.modules.pooling.MaxPool2d.a0e0fd4c3ebac3cd(1)_dilation | 1 |
torch.nn.modules.pooling.MaxPool2d.a0e0fd4c3ebac3cd(1)_kernel_size | 2 |
torch.nn.modules.pooling.MaxPool2d.a0e0fd4c3ebac3cd(1)_padding | 0 |
torch.nn.modules.pooling.MaxPool2d.a0e0fd4c3ebac3cd(1)_return_indices | false |
torch.nn.modules.pooling.MaxPool2d.a0e0fd4c3ebac3cd(1)_stride | 2 |
torch.nn.modules.container.Sequential.c56f7f1b97072cd(1)_children | [{"oml-python:serialized_object": "component_reference", "value": {"key": "0", "step_name": "0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "1", "step_name": "1"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "2", "step_name": "2"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "3", "step_name": "3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "4", "step_name": "4"}}] |
openml.extensions.pytorch.layers.functional.Functional.d2f3f9eaf5b35f2d(1)_args | [] |
openml.extensions.pytorch.layers.functional.Functional.d2f3f9eaf5b35f2d(1)_function | {"oml-python:serialized_object": "methoddescriptor", "value": "torch._C._TensorBase.reshape"} |
openml.extensions.pytorch.layers.functional.Functional.d2f3f9eaf5b35f2d(1)_kwargs | {"shape": [-1, 1024]} |
torch.nn.modules.linear.Linear.dd679bd95aaa96b6(1)_in_features | 1024 |
torch.nn.modules.linear.Linear.dd679bd95aaa96b6(1)_out_features | 256 |
torch.nn.modules.activation.LeakyReLU.65f006862e6841e5(1)_inplace | false |
torch.nn.modules.activation.LeakyReLU.65f006862e6841e5(1)_negative_slope | 0.01 |
torch.nn.modules.dropout.Dropout.287f0df3a85c80c8(1)_inplace | false |
torch.nn.modules.dropout.Dropout.287f0df3a85c80c8(1)_p | 0.5 |
torch.nn.modules.linear.Linear.4870d4e469b04ac4(1)_in_features | 256 |
torch.nn.modules.linear.Linear.4870d4e469b04ac4(1)_out_features | 10 |