Run
10197990

Run 10197990

Task 14968 (Supervised Classification) cylinder-bands Uploaded 17-04-2019 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder )),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceT hreshold,gradientboostingclassifier=sklearn.ensemble.gradient_boosting.Grad ientBoostingClassifier)(4)Automatically created scikit-learn flow.
sklearn.impute.SimpleImputer(10)_copytrue
sklearn.impute.SimpleImputer(10)_fill_value-1
sklearn.impute.SimpleImputer(10)_missing_valuesNaN
sklearn.impute.SimpleImputer(10)_strategy"constant"
sklearn.impute.SimpleImputer(10)_verbose0
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(4)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(4)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(4)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(4)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(4)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [1, 14, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 34, 36]}}]
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(4)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(4)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.preprocessing.imputation.Imputer(38)_axis0
sklearn.preprocessing.imputation.Imputer(38)_copytrue
sklearn.preprocessing.imputation.Imputer(38)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(38)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(38)_verbose0
sklearn.preprocessing.data.StandardScaler(25)_copytrue
sklearn.preprocessing.data.StandardScaler(25)_with_meantrue
sklearn.preprocessing.data.StandardScaler(25)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(4)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.preprocessing._encoders.OneHotEncoder(9)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(9)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(9)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(9)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(9)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(9)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(24)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,gradientboostingclassifier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(4)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,gradientboostingclassifier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(4)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "variancethreshold", "step_name": "variancethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_criterion"mse"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_initnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_learning_rate5.424975837404932e-05
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_loss"deviance"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_max_depth20
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_max_features0.3353502381186795
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_max_leaf_nodesnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_min_impurity_decrease0.22667057757629705
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_min_impurity_splitnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_min_samples_leaf11
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_min_samples_split18
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_min_weight_fraction_leaf0.40489935540069755
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_n_estimators230
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_n_iter_no_change1039
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_presort"auto"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_random_state58772
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_subsample0.7960493990309
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_tol7.326395098781677e-05
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_validation_fraction0.2731052613126015
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_verbose0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(20)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.5
Per class
Cross-validation details (10-fold Crossvalidation)
-3.1488 ± 0.0316
Cross-validation details (10-fold Crossvalidation)
0.4896 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.4879 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
540
Per class
Cross-validation details (10-fold Crossvalidation)
0.5778 ± 0.0078
Cross-validation details (10-fold Crossvalidation)
0.9826
Cross-validation details (10-fold Crossvalidation)
0.5778 ± 0.0078
Per class
Cross-validation details (10-fold Crossvalidation)
1.0035 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.494 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
1.0003 ± 0.0004
Cross-validation details (10-fold Crossvalidation)