Run
10160554

Run 10160554

Task 168882 (Supervised Classification) test_dataset Uploaded 02-04-2019 by Munira Alballa
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pip eline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute .SimpleImputer,svm=sklearn.svm.classes.SVC))(1)Automatically created scikit-learn flow.
sklearn.impute.SimpleImputer(10)_copytrue
sklearn.impute.SimpleImputer(10)_fill_valuenull
sklearn.impute.SimpleImputer(10)_missing_valuesNaN
sklearn.impute.SimpleImputer(10)_strategy"mean"
sklearn.impute.SimpleImputer(10)_verbose0
sklearn.svm.classes.SVC(27)_C100
sklearn.svm.classes.SVC(27)_cache_size200
sklearn.svm.classes.SVC(27)_class_weightnull
sklearn.svm.classes.SVC(27)_coef00.0
sklearn.svm.classes.SVC(27)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(27)_degree3
sklearn.svm.classes.SVC(27)_gamma"auto_deprecated"
sklearn.svm.classes.SVC(27)_kernel"rbf"
sklearn.svm.classes.SVC(27)_max_iter-1
sklearn.svm.classes.SVC(27)_probabilityfalse
sklearn.svm.classes.SVC(27)_random_state39674
sklearn.svm.classes.SVC(27)_shrinkingtrue
sklearn.svm.classes.SVC(27)_tol0.001
sklearn.svm.classes.SVC(27)_verbosefalse
sklearn.preprocessing.data.MinMaxScaler(6)_copytrue
sklearn.preprocessing.data.MinMaxScaler(6)_feature_range[0, 1]
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC))(1)_cv5
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC))(1)_error_score"raise-deprecating"
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC))(1)_fit_paramsnull
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC))(1)_iid"warn"
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC))(1)_n_jobsnull
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC))(1)_param_grid{"svm__C": [2], "svm__gamma": [0.0009765625, 0.001953125, 0.00390625, 0.0078125, 0.1, 0.25, 0.5, 1]}
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC))(1)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC))(1)_refittrue
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC))(1)_return_train_score"warn"
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC))(1)_scoringnull
sklearn.model_selection._search.GridSearchCV(estimator=sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC))(1)_verbose0
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(scaler=sklearn.preprocessing.data.MinMaxScaler,imputer=sklearn.impute.SimpleImputer,svm=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svm", "step_name": "svm"}}]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.8508 ± 0.0111
Per class
Cross-validation details (10-fold Crossvalidation)
0.8516 ± 0.0112
Per class
Cross-validation details (10-fold Crossvalidation)
0.7035 ± 0.0223
Cross-validation details (10-fold Crossvalidation)
10948.9745 ± 34.4723
Cross-validation details (10-fold Crossvalidation)
0.1477 ± 0.0111
Cross-validation details (10-fold Crossvalidation)
0.4997 ± 0
Cross-validation details (10-fold Crossvalidation)
15547
Per class
Cross-validation details (10-fold Crossvalidation)
0.856 ± 0.0111
Per class
Cross-validation details (10-fold Crossvalidation)
0.8523 ± 0.0111
Cross-validation details (10-fold Crossvalidation)
0.9996
Cross-validation details (10-fold Crossvalidation)
0.8523 ± 0.0111
Per class
Cross-validation details (10-fold Crossvalidation)
0.2957 ± 0.0222
Cross-validation details (10-fold Crossvalidation)
0.4998 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3844 ± 0.0144
Cross-validation details (10-fold Crossvalidation)
0.769 ± 0.0287
Cross-validation details (10-fold Crossvalidation)