Run
10130639

Run 10130639

Task 14968 (Supervised Classification) cylinder-bands Uploaded 25-01-2019 by Jan van Rijn
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder )),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceT hreshold,decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier)(1 )Automatically created scikit-learn flow.
sklearn.preprocessing.imputation.Imputer(29)_axis0
sklearn.preprocessing.imputation.Imputer(29)_copytrue
sklearn.preprocessing.imputation.Imputer(29)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(29)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(29)_verbose0
sklearn.preprocessing.data.StandardScaler(14)_copytrue
sklearn.preprocessing.data.StandardScaler(14)_with_meantrue
sklearn.preprocessing.data.StandardScaler(14)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_memorynull
sklearn.impute.SimpleImputer(1)_copytrue
sklearn.impute.SimpleImputer(1)_fill_value-1
sklearn.impute.SimpleImputer(1)_missing_valuesNaN
sklearn.impute.SimpleImputer(1)_strategy"constant"
sklearn.impute.SimpleImputer(1)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(3)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(3)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(3)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(3)_sparsetrue
sklearn.tree.tree.DecisionTreeClassifier(29)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(29)_criterion"entropy"
sklearn.tree.tree.DecisionTreeClassifier(29)_max_depthnull
sklearn.tree.tree.DecisionTreeClassifier(29)_max_features1.0
sklearn.tree.tree.DecisionTreeClassifier(29)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(29)_min_impurity_decrease0.0
sklearn.tree.tree.DecisionTreeClassifier(29)_min_impurity_splitnull
sklearn.tree.tree.DecisionTreeClassifier(29)_min_samples_leaf8
sklearn.tree.tree.DecisionTreeClassifier(29)_min_samples_split5
sklearn.tree.tree.DecisionTreeClassifier(29)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(29)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(29)_random_state61463
sklearn.tree.tree.DecisionTreeClassifier(29)_splitter"best"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(1)_transformer_weightsnull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(1)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,decisiontreeclassifier=sklearn.tree.tree.DecisionTreeClassifier)(1)_memorynull
sklearn.feature_selection.variance_threshold.VarianceThreshold(18)_threshold0.0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.8238 ± 0.0962
Per class
Cross-validation details (10-fold Crossvalidation)
0.7412 ± 0.0895
Per class
Cross-validation details (10-fold Crossvalidation)
0.4705 ± 0.1838
Cross-validation details (10-fold Crossvalidation)
252.1427 ± 8.1897
Cross-validation details (10-fold Crossvalidation)
0.259 ± 0.0713
Cross-validation details (10-fold Crossvalidation)
0.4879 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
540
Per class
Cross-validation details (10-fold Crossvalidation)
0.7418 ± 0.0914
Per class
Cross-validation details (10-fold Crossvalidation)
0.7407 ± 0.089
Cross-validation details (10-fold Crossvalidation)
0.9826
Cross-validation details (10-fold Crossvalidation)
0.7407 ± 0.089
Per class
Cross-validation details (10-fold Crossvalidation)
0.5308 ± 0.1462
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.4199 ± 0.0797
Cross-validation details (10-fold Crossvalidation)
0.8501 ± 0.1614
Cross-validation details (10-fold Crossvalidation)