Run
10044569

Run 10044569

Task 21 (Supervised Classification) car Uploaded 19-01-2019 by Scikit-learn Bot
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Add a single new tag. Use underscores for spaces. Press enter when done.
Add tag
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder )),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceT hreshold,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassif ier)(2)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformer_weightsnull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(3)_memorynull
sklearn.preprocessing.imputation.Imputer(34)_axis0
sklearn.preprocessing.imputation.Imputer(34)_copytrue
sklearn.preprocessing.imputation.Imputer(34)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(34)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(34)_verbose0
sklearn.preprocessing.data.StandardScaler(20)_copytrue
sklearn.preprocessing.data.StandardScaler(20)_with_meantrue
sklearn.preprocessing.data.StandardScaler(20)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(3)_memorynull
sklearn.impute.SimpleImputer(6)_copytrue
sklearn.impute.SimpleImputer(6)_fill_value-1
sklearn.impute.SimpleImputer(6)_missing_valuesNaN
sklearn.impute.SimpleImputer(6)_strategy"constant"
sklearn.impute.SimpleImputer(6)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(6)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(6)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(6)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(21)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(2)_memorynull
sklearn.ensemble.forest.RandomForestClassifier(48)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(48)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(48)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(48)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(48)_max_features0.1851705183788993
sklearn.ensemble.forest.RandomForestClassifier(48)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(48)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(48)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(48)_min_samples_leaf16
sklearn.ensemble.forest.RandomForestClassifier(48)_min_samples_split4
sklearn.ensemble.forest.RandomForestClassifier(48)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(48)_n_estimators100
sklearn.ensemble.forest.RandomForestClassifier(48)_n_jobsnull
sklearn.ensemble.forest.RandomForestClassifier(48)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(48)_random_state20241
sklearn.ensemble.forest.RandomForestClassifier(48)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(48)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

15 Evaluation measures

0.9869 ± 0.0038
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.97750.980.98250.9850.98750.990.…0.9925
0.6525 ± 0.0393
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.5750.60.6250.650.6750.70.…0.725
835.0532 ± 3.5684
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore07577.58082.58587.590
0.1416 ± 0.0044
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.13250.1350.13750.140.14250.1450.14750.15
0.229 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.227750.2280.228250.22850.228750.2290.229250.22950.22975
1728
Per class
Cross-validation details (10-fold Crossvalidation)
0.8553 ± 0.0156
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.820.830.840.850.860.870.88
1.2099
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore01.2099
0.8553 ± 0.0156
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.820.830.840.850.860.870.88
0.6185 ± 0.0199
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.580.60.620.640.66
0.3381 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.33650.3370.33750.3380.33850.3390.…0.3395
0.2341 ± 0.0038
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.2250.22750.230.23250.2350.23750.24
0.6924 ± 0.0117
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.660.670.680.690.70.710.72
­