Run
10026939

Run 10026939

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 18-01-2019 by Scikit-learn Bot
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Add a single new tag. Use underscores for spaces. Press enter when done.
Add tag
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder )),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceT hreshold,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassif ier)(2)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformer_weightsnull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(3)_memorynull
sklearn.preprocessing.imputation.Imputer(34)_axis0
sklearn.preprocessing.imputation.Imputer(34)_copytrue
sklearn.preprocessing.imputation.Imputer(34)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(34)_strategy"median"
sklearn.preprocessing.imputation.Imputer(34)_verbose0
sklearn.preprocessing.data.StandardScaler(20)_copytrue
sklearn.preprocessing.data.StandardScaler(20)_with_meantrue
sklearn.preprocessing.data.StandardScaler(20)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(3)_memorynull
sklearn.impute.SimpleImputer(6)_copytrue
sklearn.impute.SimpleImputer(6)_fill_value-1
sklearn.impute.SimpleImputer(6)_missing_valuesNaN
sklearn.impute.SimpleImputer(6)_strategy"constant"
sklearn.impute.SimpleImputer(6)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(6)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(6)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(6)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(21)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(2)_memorynull
sklearn.ensemble.forest.RandomForestClassifier(48)_bootstrapfalse
sklearn.ensemble.forest.RandomForestClassifier(48)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(48)_criterion"entropy"
sklearn.ensemble.forest.RandomForestClassifier(48)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(48)_max_features0.5459385304591824
sklearn.ensemble.forest.RandomForestClassifier(48)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(48)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(48)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(48)_min_samples_leaf14
sklearn.ensemble.forest.RandomForestClassifier(48)_min_samples_split14
sklearn.ensemble.forest.RandomForestClassifier(48)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(48)_n_estimators100
sklearn.ensemble.forest.RandomForestClassifier(48)_n_jobsnull
sklearn.ensemble.forest.RandomForestClassifier(48)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(48)_random_state47567
sklearn.ensemble.forest.RandomForestClassifier(48)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(48)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9721 ± 0.0032
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.9660.9680.970.9720.9740.9760.…0.978
0.9097 ± 0.006
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.8950.90.9050.910.9150.92
0.817 ± 0.0122
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.790.80.810.820.830.84
9133.4917 ± 10.4956
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore0900905910915920925930935
0.2137 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.210.20750.21250.2150.21750.22
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.4…0.49470.4…0.49480.4…0.4946750.4…0.4947250.4…0.494750.4…0.4947750.4…0.494825
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.9105 ± 0.0062
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.8950.90.9050.910.9150.92
0.9099 ± 0.006
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.8950.90.9050.910.9150.92
0.9924
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.9924
0.9099 ± 0.006
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.8950.90.9050.910.9150.92
0.432 ± 0.0067
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.4150.420.4250.430.4350.440.…0.445
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.4974
0.2813 ± 0.0041
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.280.2750.27750.28250.2850.2…0.2875
0.5657 ± 0.0083
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.550.5550.560.5650.570.5750.58
­