Run
10024333

Run 10024333

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 18-01-2019 by Scikit-learn Bot
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Add a single new tag. Use underscores for spaces. Press enter when done.
Add tag
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder )),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceT hreshold,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassif ier)(2)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformer_weightsnull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(3)_memorynull
sklearn.preprocessing.imputation.Imputer(34)_axis0
sklearn.preprocessing.imputation.Imputer(34)_copytrue
sklearn.preprocessing.imputation.Imputer(34)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(34)_strategy"median"
sklearn.preprocessing.imputation.Imputer(34)_verbose0
sklearn.preprocessing.data.StandardScaler(20)_copytrue
sklearn.preprocessing.data.StandardScaler(20)_with_meantrue
sklearn.preprocessing.data.StandardScaler(20)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(3)_memorynull
sklearn.impute.SimpleImputer(6)_copytrue
sklearn.impute.SimpleImputer(6)_fill_value-1
sklearn.impute.SimpleImputer(6)_missing_valuesNaN
sklearn.impute.SimpleImputer(6)_strategy"constant"
sklearn.impute.SimpleImputer(6)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(6)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(6)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(6)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(21)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(2)_memorynull
sklearn.ensemble.forest.RandomForestClassifier(48)_bootstrapfalse
sklearn.ensemble.forest.RandomForestClassifier(48)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(48)_criterion"entropy"
sklearn.ensemble.forest.RandomForestClassifier(48)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(48)_max_features0.6437733188846805
sklearn.ensemble.forest.RandomForestClassifier(48)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(48)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(48)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(48)_min_samples_leaf11
sklearn.ensemble.forest.RandomForestClassifier(48)_min_samples_split16
sklearn.ensemble.forest.RandomForestClassifier(48)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(48)_n_estimators100
sklearn.ensemble.forest.RandomForestClassifier(48)_n_jobsnull
sklearn.ensemble.forest.RandomForestClassifier(48)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(48)_random_state35602
sklearn.ensemble.forest.RandomForestClassifier(48)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(48)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9737 ± 0.0039
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.96250.9650.96750.970.97250.9750.97750.98
0.9141 ± 0.0064
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.90.9050.910.9150.920.9…0.925
0.8261 ± 0.013
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.80.810.820.830.840.85
9515.1778 ± 12.3268
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore0920930940950960970980
0.1996 ± 0.0038
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.19250.1950.19750.20.20250.2050.…0.2075
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.4…0.49470.4…0.49480.4…0.4946750.4…0.4947250.4…0.494750.4…0.4947750.4…0.494825
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.9147 ± 0.0066
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.90.9050.910.9150.920.9…0.925
0.9144 ± 0.0064
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.90.9050.910.9150.920.9…0.925
0.9924
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.9924
0.9144 ± 0.0064
Per class
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.90.9050.910.9150.920.9…0.925
0.4035 ± 0.0076
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.3850.390.3950.40.4050.410.4150.…0.42
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.4974
0.273 ± 0.0053
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.2650.270.2750.280.285
0.549 ± 0.0107
Cross-validation details (10-fold Crossvalidation)
Created with Highcharts 5.0.7RepeatScore00.530.540.550.560.570.58
­