Run
10011309

Run 10011309

Task 3021 (Supervised Classification) sick Uploaded 18-01-2019 by Scikit-learn Bot
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.pr eprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.St andardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.imput e.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder )),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceT hreshold,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassif ier)(2)Automatically created scikit-learn flow.
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformer_weightsnull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(3)_memorynull
sklearn.preprocessing.imputation.Imputer(34)_axis0
sklearn.preprocessing.imputation.Imputer(34)_copytrue
sklearn.preprocessing.imputation.Imputer(34)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(34)_strategy"most_frequent"
sklearn.preprocessing.imputation.Imputer(34)_verbose0
sklearn.preprocessing.data.StandardScaler(20)_copytrue
sklearn.preprocessing.data.StandardScaler(20)_with_meantrue
sklearn.preprocessing.data.StandardScaler(20)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(3)_memorynull
sklearn.impute.SimpleImputer(6)_copytrue
sklearn.impute.SimpleImputer(6)_fill_value-1
sklearn.impute.SimpleImputer(6)_missing_valuesNaN
sklearn.impute.SimpleImputer(6)_strategy"constant"
sklearn.impute.SimpleImputer(6)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(6)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(6)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(6)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(6)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(21)_threshold0.0
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),variancethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(2)_memorynull
sklearn.ensemble.forest.RandomForestClassifier(48)_bootstrapfalse
sklearn.ensemble.forest.RandomForestClassifier(48)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(48)_criterion"entropy"
sklearn.ensemble.forest.RandomForestClassifier(48)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(48)_max_features0.3544712950240314
sklearn.ensemble.forest.RandomForestClassifier(48)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(48)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(48)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(48)_min_samples_leaf6
sklearn.ensemble.forest.RandomForestClassifier(48)_min_samples_split10
sklearn.ensemble.forest.RandomForestClassifier(48)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(48)_n_estimators100
sklearn.ensemble.forest.RandomForestClassifier(48)_n_jobsnull
sklearn.ensemble.forest.RandomForestClassifier(48)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(48)_random_state34257
sklearn.ensemble.forest.RandomForestClassifier(48)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(48)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.998 ± 0.0009
Per class
Cross-validation details (10-fold Crossvalidation)
0.9867 ± 0.0052
Per class
Cross-validation details (10-fold Crossvalidation)
0.881 ± 0.0477
Cross-validation details (10-fold Crossvalidation)
2739.6968 ± 22.8937
Cross-validation details (10-fold Crossvalidation)
0.023 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.1152 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
3772
Per class
Cross-validation details (10-fold Crossvalidation)
0.9867 ± 0.0052
Per class
Cross-validation details (10-fold Crossvalidation)
0.987 ± 0.0051
Cross-validation details (10-fold Crossvalidation)
0.3333
Cross-validation details (10-fold Crossvalidation)
0.987 ± 0.0051
Per class
Cross-validation details (10-fold Crossvalidation)
0.1998 ± 0.0314
Cross-validation details (10-fold Crossvalidation)
0.2398 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.0936 ± 0.0092
Cross-validation details (10-fold Crossvalidation)
0.3903 ± 0.0391
Cross-validation details (10-fold Crossvalidation)