OpenML
An AdaBoost classifier. An AdaBoost [1]_ classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same…
1 runs0 likes0 downloads0 reach0 impact
A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive…
1 runs0 likes0 downloads0 reach0 impact
Learner classif.randomForest from package(s) randomForest.
0 runs0 likes0 downloads0 reach0 impact
Learner classif.randomForest from package(s) randomForest.
0 runs0 likes0 downloads0 reach0 impact
Learner classif.rpart from package(s) rpart.
0 runs0 likes0 downloads0 reach0 impact
Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
0 runs0 likes0 downloads0 reach0 impact
J. Platt: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In B. Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning,…
0 runs0 likes0 downloads0 reach0 impact
Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996.
0 runs0 likes0 downloads0 reach0 impact
Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
0 runs0 likes0 downloads0 reach0 impact
Weka implementation of MathParameter
0 runs0 likes0 downloads0 reach0 impact
Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA.
0 runs0 likes0 downloads0 reach0 impact
Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996.
0 runs0 likes0 downloads0 reach0 impact
J. Platt: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In B. Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning,…
0 runs0 likes0 downloads0 reach0 impact
Moa implementation of HoeffdingTree
0 runs0 likes0 downloads0 reach0 impact
J. Platt: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In B. Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning,…
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.rpart from package(s) rpart.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.randomForest.filtered.oversampled from package(s) mlr, randomForestSRC, randomForest.
0 runs0 likes0 downloads0 reach0 impact
J. Platt: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In B. Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning,…
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.randomForest.filtered from package(s) randomForestSRC, randomForest.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.rpart from package(s) rpart.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.rpart.preproc from package(s) rpart.
0 runs0 likes0 downloads0 reach0 impact
Automatically created sub-component.
0 runs0 likes0 downloads0 reach0 impact
Automatically created sub-component.
0 runs0 likes0 downloads0 reach0 impact
Automatically created sub-component.
0 runs0 likes0 downloads0 reach0 impact
Automatically created sub-component.
0 runs0 likes0 downloads0 reach0 impact
Automatically created sub-component.
0 runs0 likes0 downloads0 reach0 impact
Automatically created sub-component.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.rpart.preproc.filtered from package(s) randomForestSRC, rpart.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.rpart.preproc from package(s) rpart.
0 runs0 likes0 downloads0 reach0 impact
Learner classif.rpart from package(s) rpart.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.rpart.preproc.filtered from package(s) rpart.
0 runs0 likes0 downloads0 reach0 impact
Weka implementation of LinearRegression
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.logreg.preproc.filtered from package(s) stats.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.logreg.preproc from package(s) stats.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.knn from package(s) class.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.knn.preproc from package(s) class.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.ctree from package(s) party.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.rpart from package(s) rpart.
0 runs0 likes0 downloads0 reach0 impact
Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996.
0 runs0 likes0 downloads0 reach0 impact
Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
0 runs0 likes0 downloads0 reach0 impact
J. Platt: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In B. Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning,…
0 runs0 likes0 downloads0 reach0 impact
Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996.
0 runs0 likes0 downloads0 reach0 impact
Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996.
0 runs0 likes0 downloads0 reach0 impact
Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
0 runs0 likes0 downloads0 reach0 impact
Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
0 runs0 likes0 downloads0 reach0 impact
Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
0 runs0 likes0 downloads0 reach0 impact
Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
0 runs0 likes0 downloads0 reach0 impact
Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
0 runs0 likes0 downloads0 reach0 impact
Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
0 runs0 likes0 downloads0 reach0 impact
Eibe Frank, Mark Hall, Bernhard Pfahringer: Locally Weighted Naive Bayes. In: 19th Conference in Uncertainty in Artificial Intelligence, 249-256, 2003. C. Atkeson, A. Moore, S. Schaal (1996). Locally…
0 runs0 likes0 downloads0 reach0 impact
R. Kohavi (1995). Wrappers for Performance Enhancement and Oblivious Decision Graphs. Department of Computer Science, Stanford University.
0 runs0 likes0 downloads0 reach0 impact
Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95, 2005. Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for…
0 runs0 likes0 downloads0 reach0 impact
J. Friedman, T. Hastie, R. Tibshirani (1998). Additive Logistic Regression: a Statistical View of Boosting. Stanford University.
0 runs0 likes0 downloads0 reach0 impact
Weka implementation of RandomCommittee
0 runs0 likes0 downloads0 reach0 impact
Tin Kam Ho (1998). The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence. 20(8):832-844. URL…
0 runs0 likes0 downloads0 reach0 impact
J. Friedman, T. Hastie, R. Tibshirani (1998). Additive Logistic Regression: a Statistical View of Boosting. Stanford University.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.kknn.preproc from package(s) !kknn.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.kknn from package(s) !kknn.
0 runs0 likes0 downloads0 reach0 impact
D. Aha, D. Kibler (1991). Instance-based learning algorithms. Machine Learning. 6:37-66.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.kknn.preproc from package(s) !kknn.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.kknn from package(s) !kknn.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.naiveBayes from package(s) e1071.
0 runs0 likes0 downloads0 reach0 impact
Weka implementation of MultiSearch
0 runs0 likes0 downloads0 reach0 impact
Weka implementation of MultiSearch
0 runs0 likes0 downloads0 reach0 impact
J. Platt: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In B. Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning,…
0 runs0 likes0 downloads0 reach0 impact
Weka implementation of MultiSearch
0 runs0 likes0 downloads0 reach0 impact
Weka implementation of MultiSearch
0 runs0 likes0 downloads0 reach0 impact
J.H. Friedman (1999). Stochastic Gradient Boosting.
0 runs0 likes0 downloads0 reach0 impact
Weka implementation of MultiSearch
0 runs0 likes2 downloads2 reach0 impact
J. Friedman, T. Hastie, R. Tibshirani (1998). Additive Logistic Regression: a Statistical View of Boosting. Stanford University.
0 runs0 likes1 downloads1 reach0 impact
Weka implementation of MultiSearch
0 runs0 likes0 downloads0 reach0 impact
Weka implementation of MultiSearch
0 runs0 likes0 downloads0 reach0 impact
Weka implementation of MultiSearch
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.naiveBayes.preproc from package(s) e1071.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.randomForest.preproc from package(s) randomForest.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.randomForest from package(s) randomForest.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.rpart.preproc from package(s) rpart.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.kknn.preproc from package(s) !kknn.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.kknn from package(s) !kknn.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.mlp.preproc from package(s) RSNNS.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.mlp from package(s) RSNNS.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.PART.preproc from package(s) RWeka.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.PART from package(s) RWeka.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.svm.preproc from package(s) e1071.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.svm from package(s) e1071.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.naiveBayes.preproc from package(s) e1071.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.naiveBayes from package(s) e1071.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.rpart.preproc from package(s) rpart.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.rpart from package(s) rpart.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.kknn.preproc from package(s) !kknn.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.kknn from package(s) !kknn.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.mlp.preproc from package(s) RSNNS.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.mlp from package(s) RSNNS.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.PART.preproc from package(s) RWeka.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.PART from package(s) RWeka.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.naiveBayes.preproc from package(s) e1071.
0 runs0 likes0 downloads0 reach0 impact
Learner mlr.classif.naiveBayes from package(s) e1071.
0 runs0 likes0 downloads0 reach0 impact