shogun.machine.SVMLight
Visibility: public
Uploaded 14-03-2019 by
Gil Hoben
shogun==6.2.0
numpy>=1.7.0
0 runs
0 likes
downloaded by 0 people 0 issues
0 downvotes
, 0 total downloads
Issue
#Downvotes for this reason
By
Automatically created shogun flow.
Components
Parameters
C1 default: 1.0 C2 default: 1.0 custom_kernel default: null data_locked default: null epsilon default: 1e-05 kernel default: {"oml-python:serialized_object": "function", "key": "kernel", "value": "shogun.kernel"} kernel_backup default: null labels default: null linear_term default: null m_alpha default: null m_bias default: 0.0 m_svs default: null max_train_time default: 0.0 mkl default: null nu default: 0.5 objective default: 0.0 qpsize default: 41 solver_type default: "ST_AUTO" store_model_features default: null svm_loaded default: null tube_epsilon default: 0.01 use_batch_computation default: null use_bias default: null use_linadd default: null use_shrinking default: null
0
Runs
List all runs
Parameter:
none
C1
C2
custom kernel
data locked
epsilon
kernel
kernel backup
labels
linear term
m alpha
m bias
m svs
max train time
mkl
nu
objective
qpsize
solver type
store model features
svm loaded
tube epsilon
use batch computation
use bias
use linadd
use shrinking
Supervised Classification
Supervised Regression
Learning Curve
Supervised Data Stream Classification
Clustering
Machine Learning Challenge
Survival Analysis
Subgroup Discovery
area under roc curve
average cost
binominal test
build cpu time
build memory
c index
chi-squared
class complexity
class complexity gain
confusion matrix
correlation coefficient
cortana quality
coverage
f measure
information gain
jaccard
kappa
kb relative information score
kohavi wolpert bias squared
kohavi wolpert error
kohavi wolpert sigma squared
kohavi wolpert variance
kononenko bratko information score
matthews correlation coefficient
mean absolute error
mean class complexity
mean class complexity gain
mean f measure
mean kononenko bratko information score
mean precision
mean prior absolute error
mean prior class complexity
mean recall
mean weighted area under roc curve
mean weighted f measure
mean weighted precision
weighted recall
number of instances
os information
positives
precision
predictive accuracy
prior class complexity
prior entropy
probability
quality
ram hours
recall
relative absolute error
root mean prior squared error
root mean squared error
root relative squared error
run cpu time
run memory
run virtual memory
scimark benchmark
single point area under roc curve
total cost
unclassified instance count
usercpu time millis
usercpu time millis testing
usercpu time millis training
webb bias
webb error
webb variance
joint entropy
pattern team auroc10
wall clock time millis
wall clock time millis training
wall clock time millis testing
unweighted recall