Flow
weka.RandomSubSpace_AdaBoostM1_REPTree

weka.RandomSubSpace_AdaBoostM1_REPTree

Visibility: public Uploaded 07-12-2014 by Ky-Anh Tran Weka_3.7.12-SNAPSHOT 0 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Tin Kam Ho (1998). The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence. 20(8):832-844. URL http://citeseer.ist.psu.edu/ho98random.html.

Components

Wweka.AdaBoostM1_REPTree(2)Full name of base classifier. (default: weka.classifiers.trees.REPTree)

Parameters

-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution).
INumber of iterations. (default 10)default: 10
LMaximum tree depth (default -1, no maximum)
MSet minimum number of instances per leaf (default 2).
NNumber of folds for reduced error pruning (default 3).
PSize of each subspace: < 1: percentage of the number of attributes >=1: absolute number of attributesdefault: 0.5
RSpread initial count over all class values (i.e. don't use 1 per value)
SRandom number seed. (default 1)default: 1
VSet minimum numeric class variance proportion of train variance for split (default 1e-3).
WFull name of base classifier. (default: weka.classifiers.trees.REPTree)default: weka.classifiers.meta.AdaBoostM1
num-slotsNumber of execution slots. (default 1 - i.e. no parallelism) (use 0 to auto-detect number of cores)default: 1
output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table